	TEST REPOR	T	
FCC ID	2ABPRSC-830		
Test Report No:	TCT220216E012	(\mathcal{L})	
Date of issue:	Feb. 21, 2022 🔍		
Testing laboratory: :	SHENZHEN TONGCE TESTIN	G LAB	
Testing location/ address:	TCT Testing Industrial Park Fue Street, Bao'an District Shenzhe Republic of China		
Applicant's name: :	Sound Crush Company Limited		
Address::	Bldg 8, Xiang YuEr Ind.Park, Lo ShenZhen, China	ongSheng Road, Long	Gang,
Manufacturer's name :	Sound Crush Company Limited		
Address:	Bldg 8, Xiang YuEr Ind.Park, Lo ShenZhen, China	ongSheng Road, Long	Gang,
Standard(s):	FCC CFR Title 47 Part 15 Subp FCC KDB 558074 D01 15.247 ANSI C63.10:2013		
Product Name::	Speaker with Fast Wireless Cha	arge	
Trade Mark:	N/A		
Model/Type reference :	SC-830, EL207		
Rating(s):	Rechargeable Li-ion Battery DC	3.7V	
Date of receipt of test item	Feb. 16, 2022		
Date (s) of performance of test:	Feb. 16, 2022 ~ Feb. 21, 2022		
Tested by (+signature) :	Brews XU	forents obacin	
Check by (+signature) :	Beryl ZHAO	BayComPCT	TING
Approved by (+signature):	Tomsin	Jomsn's st	
TONGCE TESTING LAB. TH	oduced except in full, without th his document may be altered or ly, and shall be noted in the revi apply to the tested sample.	revised by SHENZHE	N TONGCE

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list3
1.3. Operation Frequency4
2. Test Result Summary
3. General Information 6
3.1. Test environment and mode6
3.2. Description of Support Units6
4. Facilities and Accreditations7
4.1. Facilities
4.2. Location
4.3. Measurement Uncertainty7
5. Test Results and Measurement Data 8
5.1. Antenna requirement8
5.2. Conducted Emission
5.3. Conducted Output Power13
5.4. 20dB Occupy Bandwidth14
5.5. Carrier Frequencies Separation
5.6. Hopping Channel Number16
5.7. Dwell Time17
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement19
5.10.Conducted Spurious Emission Measurement20
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	Speaker with Fast Wireless Charge	
Model/Type reference:	SC-830	
Sample Number:	TCT220216E012-0101	Z)
Bluetooth Version:	V5.3	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	\mathcal{I}
Antenna Type:	PCB Antenna	
Antenna Gain:	6dBi	No.
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	SC-830	\boxtimes
Other models	EL207	
	ested model, other models are derivative models. The models are identical	in circuit and PCB

Note: SC-830 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of SC-830 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G`)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
<u> </u>		·		·		·	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S		.				S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	- 39	2441MHz	- 59	2461MHz		-

Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS (
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Report No.: TCT220216E012

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	25.0 °C	25.3 ℃
Humidity:	55 % RH	54 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	FCC_assist_1.0.2.2	
Power Level:	10	
Test Mode:	·	
Engineering mode:	Keep the EUT in continuous	s transmitting by select

channel and modulations with Fully-charged battery. The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR3QD1SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

FCT通测检测 4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

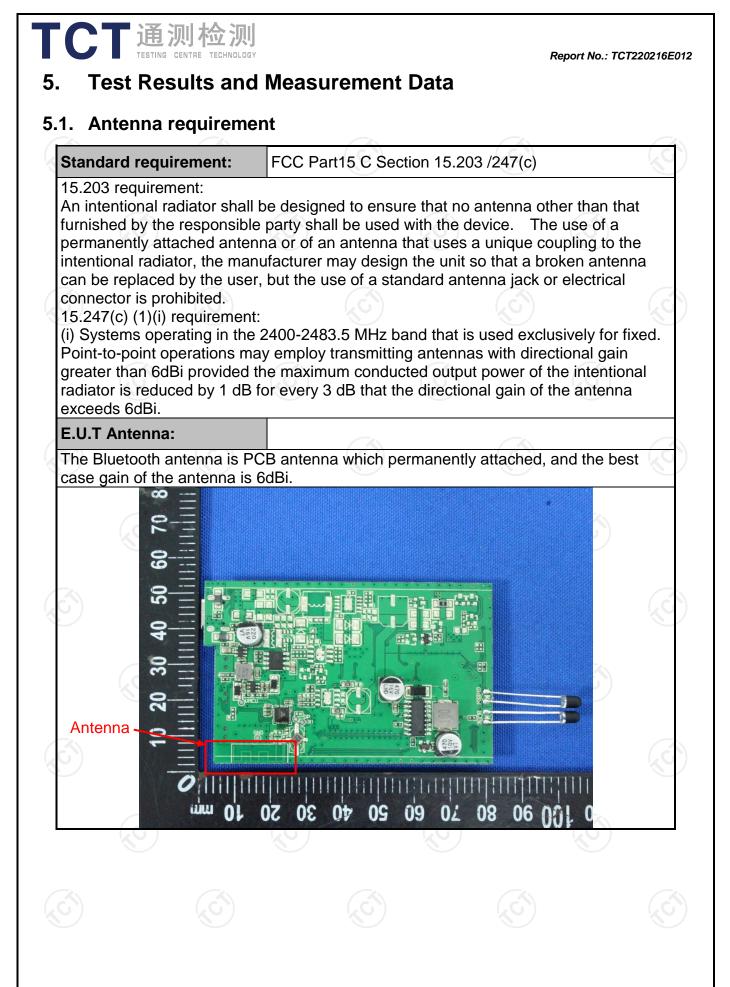
Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Page 8 of 96

5.2. Conducted Emission

5.2.1. Test Specification

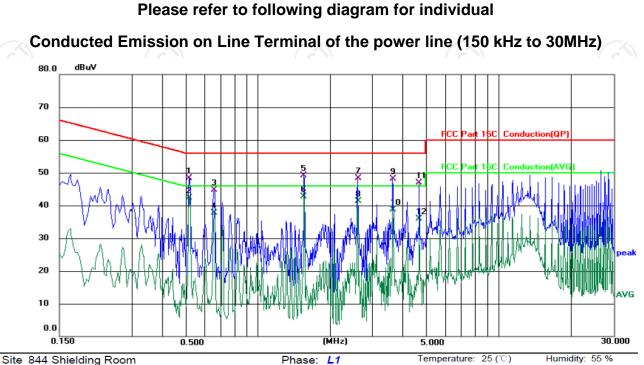
Test Method: ANSI C63.10:2013 Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Fernark Limits: Test Setup: Reference Plane Fernark EUT_d power Test table/Insulation plane Nemark EUT_d power Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lini impedance stabilization network (L.I.S.N.). Thi provides a 500hm/50uH coupling impedance for th measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 500hm/50uH coupling impedance of the measuring equipment.				(
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 Reference Plane Ferrark EUT Ac power Filter Ac power Filter Ac power Filter Ac power Filter Filter Resceiver Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter <td>Test Requirement:</td> <td>FCC Part15 C Section</td> <td>n 15.207</td> <td>No. 1</td>	Test Requirement:	FCC Part15 C Section	n 15.207	No. 1
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 0.5-5 56 46 5-30 60 50 Reference Plane Image: transmitting the provide of t	Test Method:	ANSI C63.10:2013		
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Colspan="2"Co	Frequency Range:	150 kHz to 30 MHz	(C ¹)	(\mathbf{c})
Limits: Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: test setup: Image: test setup: Reference Plane Image: test setup: Test Mode: Charging + Transmitting Mode 1. The E.U.T i	Receiver setup:	RBW=9 kHz, VBW=30	0 kHz, Sweep time	e=auto
Imits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imit Set Setup: Imit Set Setup: Remark E.U.T Ac power Imit Set Setup: Imit Set Setup: Imit Set Setup: Remark E.U.T Example Imit Set Setup: Test Mode: Charging + Transmitting Mode Imit Set Setup: Imit Set Setup: Test Mode: Charging + Transmitting Mode Imit Set Setup: Imit Set Setup: Test Mode: Charging + Transmitting Mode Imit Set Setup: Imit Setup: Test Mode: The peripheral devices are also connected to the mai provides a 50ohm/50uH coupling impedance for th measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance of the test setup an photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		Frequency range	Limit (dBuV)
0.5-5 56 46 5-30 60 50 Reference Plane				
5-30 60 50 Reference Plane Image: Sector Plane Reference Plane Image: Sector Plane Image: Sector Plane Reference Plane Image: Sector Plane Reference Plane Image: Sector Plane Reference Plane Image: Sector Plane Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). Thi provides a 50ohm/50uH coupling impedance for th measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). 3. Both sides of	Limits:	0.15-0.5	66 to 56*	
Test Setup: Reference Plane Image: Reference Plane Image: Reference Plane Reference Plane Image: Reference Plane Image: Reference Plane Image: Reference Plane Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas reference to the block diagram of the test setup an photographs). <td< td=""><td></td><td>0.5-5</td><td>56</td><td>46</td></td<>		0.5-5	56	46
Test Setup: Image: Charging + Transmitting Mode Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a ling impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		5-30	60	50
Test Setup: Image: Constrained and the set of the set		Reference	ce Plane	
 The E.U.T is connected to an adapter through a lining edance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the mais power through a LISN that provides a 500hm/50ul coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 	Test Setup:	Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	er EMI Receiver	AC power
 impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 	lest Mode:		0	
Test Result: PASS	Test Procedure:	 impedance stability provides a 500hm/measuring equipmer 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C conducted interfere emission, the relative the interface cables 	zation network 50uH coupling im ent. ces are also conne ISN that provides e with 50ohm tern diagram of the . line are checked ince. In order to fin ve positions of equals must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to
	Test Result:			

Page 9 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339

Report No.: TCT220216E012

Page 10 of 96


http://www.tct-lab.com

Fax: 86-755-27673332

5.2.2. Test Instruments

	Cond	lucted Emission	Shielding R	oom Test Site (8	43)
	Equipment	Manufacturer	Model	Serial Number	Calibration Due
0	EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022
	Line-5	ТСТ	CE-05	N/A	Jul. 07, 2022
	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

5.2.3. Test data

Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5180	39.06	9.20	48.26	56.00	-7.74	QP	
2		0.5180	33.20	9.20	42.40	46.00	-3.60	AVG	
3		0.6580	35.58	9.18	44.76	56.00	-11.24	QP	
4		0.6580	28.45	9.18	37.63	46.00	-8.37	AVG	
5		1.5580	39.63	9.39	49.02	56.00	-6.98	QP	
6	*	1.5580	33.41	9.39	42.80	46.00	-3.20	AVG	
7		2.5980	38.85	9.49	48.34	56.00	-7.66	QP	
8		2.5980	31.75	9.49	41.24	46.00	-4.76	AVG	
9		3.6380	38.59	9.54	48.13	56.00	-7.87	QP	
10		3.6380	29.16	9.54	38.70	46.00	-7.30	AVG	
11		4.6779	37.38	9.56	46.94	56.00	-9.06	QP	
12		4.6779	26.26	9.56	35.82	46.00	-10.18	AVG	

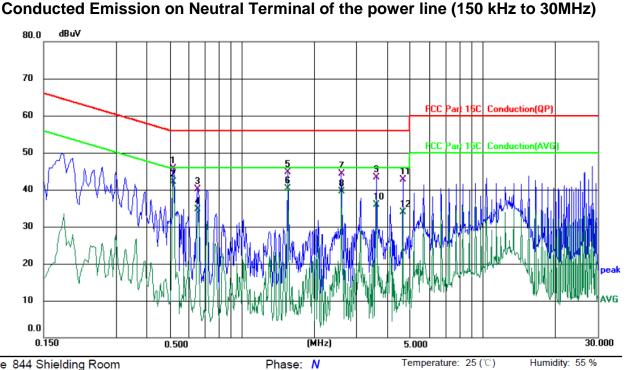
Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 96

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Report No.: TCT220216E012

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5180	36.42	9.22	45.64	56.00	-10.36	QP	
2	*	0.5180	32.91	9.22	42.13	46.00	-3.87	AVG	
3		0.6540	30.86	9.21	40.07	56.00	-15.93	QP	
4		0.6540	25.41	9.21	34.62	46.00	-11.38	AVG	
5		1.5540	35.30	9.35	44.65	56.00	-11.35	QP	
6		1.5540	30.98	9.35	40.33	46.00	-5.67	AVG	
7		2.5860	34.92	9.41	44.33	56.00	-11.67	QP	
8		2.5860	30.01	9.41	39.42	46.00	-6.58	AVG	
9		3.6220	33.83	9.44	43.27	56.00	-12.73	QP	
10		3.6220	26.55	9.44	35.99	46.00	-10.01	AVG	
11		4.6579	33.19	9.46	42.65	56.00	-13.35	QP	
12		4.6579	24.35	9.46	33.81	46.00	-12.19	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 12 of 96

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	
Test Mode:	Spectrum Analyzer Eur Transmitting mode with modulation Image: Constraint of the second sec
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Manufacturer	Model No.	Serial Number	Calibration Due
Agilent	N9020A	MY49100619	Jul. 18, 2022
Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS O

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 15 of 96

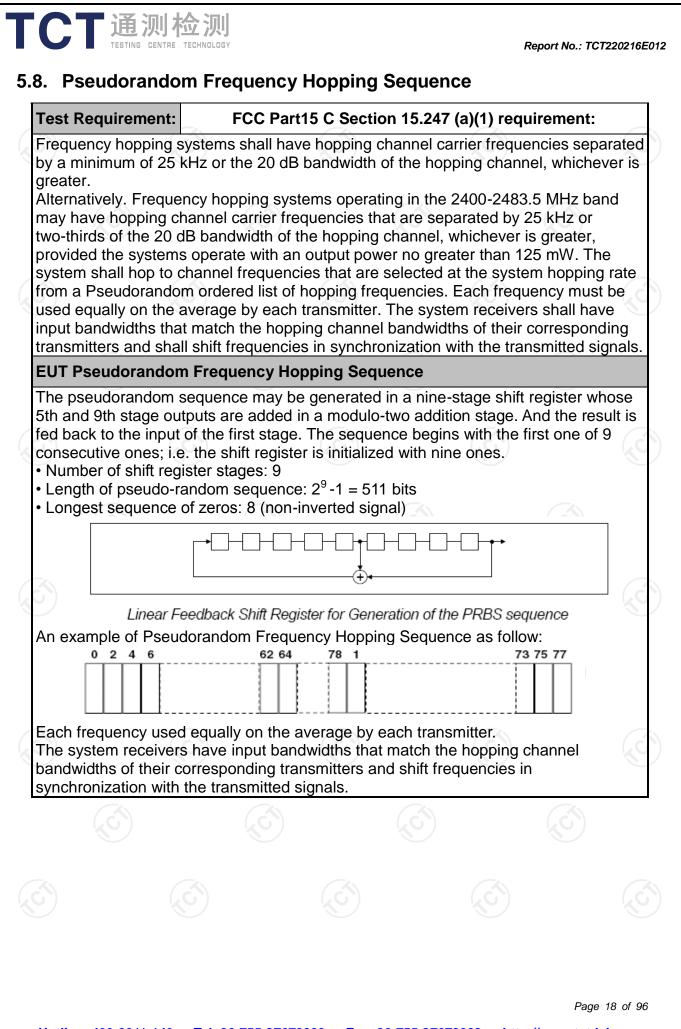
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
(G)	66		G	(\mathbf{G})


5.7. Dwell Time

5.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)
KDB 558074 D01 v05r02
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spectrum Analyzer EUT
Hopping mode
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
	(G)) ()	(G [*])	(\mathcal{G})

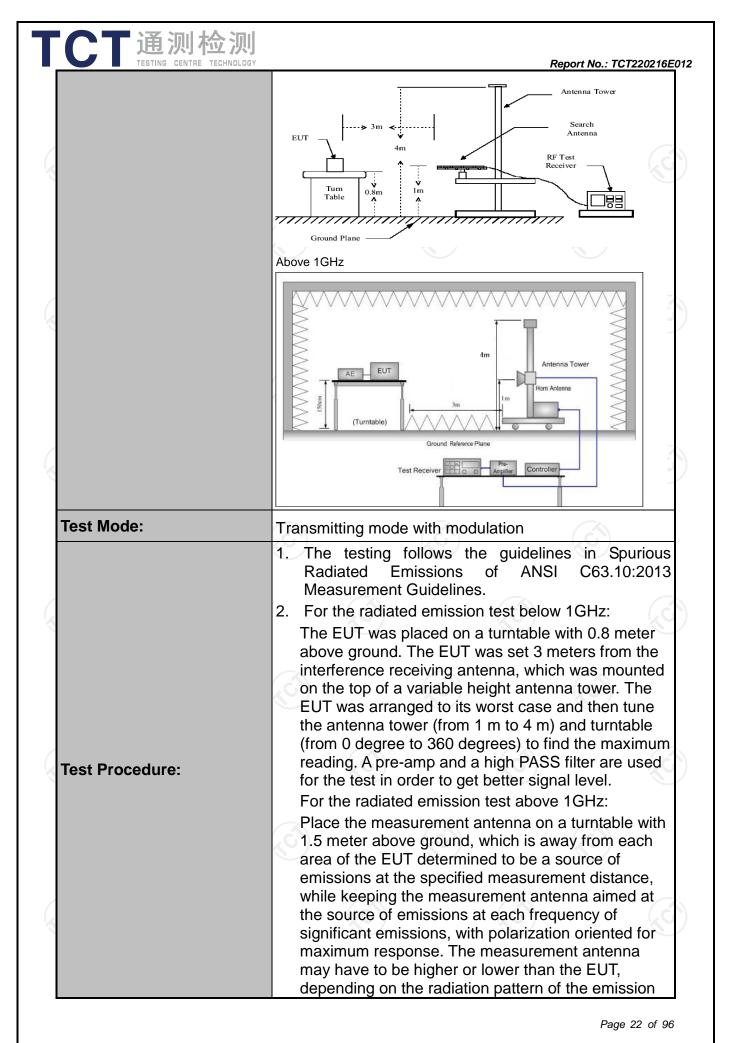
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022



5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			<u> </u>		
Test Method:	ANSI C63.10):2013						
Frequency Range:	9 kHz to 25 (GHz	3			í.		
Measurement Distance:	3 m	X	\mathbf{y}		K)		
Antenna Polarization:	Horizontal &	Vertical						
	Frequency	Detector	RBW	VBW	W Remar			
	9kHz- 150kHz	Quasi-peak	(200Hz	1kHz	Quas	i-peak Value		
Receiver Setup:	150kHz- Quasi-peak 30MHz		k 9kHz	30kHz	Quas	i-peak Value		
	30MHz-1GHz Quasi-			300KHz		i-peak Value		
	Above 1GHz	Peak	1MHz	3MHz		eak Value		
		Peak	1MHz	10Hz	Average Value			
	Frequen		Field Stre (microvolts)	/meter)		asurement nce (meters)		
	0.009-0.4		2400/F(300		
	0.490-1.7		24000/F	(KHz)		30		
	1.705-3		30	<u>, </u>		30		
	88-216				6	3		
Limit:	216-96	1	<u>150</u> 200		-20	3		
	Above 9		500			3		
	Frequency	(micro	d Strength ovolts/meter) 500	Distand (meter 3				
	Above 1GHz	Z	5000	3		Peak		
Test setup:	C.Sm	stance = 3m			Compu			
Í)	30MHz to 1GHz		(,					

	mea max ante restr abov 3. Set EUT 4. Use (1) (2)	iving the maximum surement antenna imizes the emission nna elevation for m ricted to a range of ve the ground or re to the maximum p transmit continuo the following spect Span shall wide er emission being me Set RBW=120 kHz for f>1GHz ; VBW Sweep = auto; De = max hold for pe) For average mean correction factor r 15.35(c). Duty cycl On time =N1*L1+N	a signal. The final elevation shall be ns. The measuren naximum emission heights of from 1 ference ground pl power setting and usly. ctrum analyzer set nough to fully capt easured; z for f < 1 GHz, RE ≥RBW; etector function = eak surement: use dut method per le = On time/100 r	ment ns shall be m to 4 m ane. I enable the tings: ture the BW=1MHz peak; Trace ty cycle milliseconds
		Where N1 is num length of type 1 p	n Level = Peak Er uty cycle) g: Antenna Factor	mission + Cable
Test results:		Where N1 is num length of type 1 p Average Emission Level + 20*log(Du Corrected Reading	oulses, etc. n Level = Peak Er uty cycle) g: Antenna Factor	mission + Cable
Test results:		Where N1 is num length of type 1 p Average Emission Level + 20*log(Du Corrected Reading	oulses, etc. n Level = Peak Er uty cycle) g: Antenna Factor	mission + Cable
Test results:		Where N1 is num length of type 1 p Average Emission Level + 20*log(Du Corrected Reading	oulses, etc. n Level = Peak Er uty cycle) g: Antenna Factor	mission + Cable
Test results:		Where N1 is num length of type 1 p Average Emission Level + 20*log(Du Corrected Reading	oulses, etc. n Level = Peak Er uty cycle) g: Antenna Factor	mission + Cable

5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A
		<u> </u>)	

Page 24 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. **Test Data**

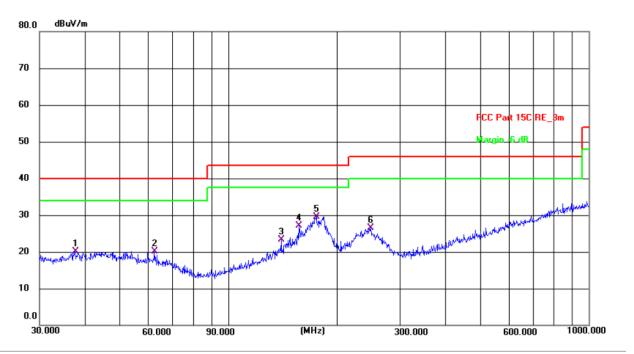
TCT通测检测 TCT通测检测

Please refer to following diagram for individual

Site #1 3m Anechoic Chamber Limit: FCC Part 15C RE_3m

Polarization: Horizontal

Temperature: 25.3(C) Humidity: 54 %


Report No.: TCT220216E012

Limit:	FCC Part 150	CRE_3m		Power: DC 3.7 V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.5868	7.10	13.88	20.98	40.00	-19.02	QP	Р	
2	55.6094	6.95	13.07	20.02	40.00	-19.98	QP	Р	
3	104.5361	5.93	10.80	16.73	43.50	-26.77	QP	Р	
4 *	186.4409	22.06	11.52	33.58	43.50	-9.92	QP	Р	
5	243.3772	12.00	12.75	24.75	46.00	-21.25	QP	Р	
6	334.8589	6.73	14.91	21.64	46.00	-24.36	QP	Ρ	

Page 25 of 96

Vertical:

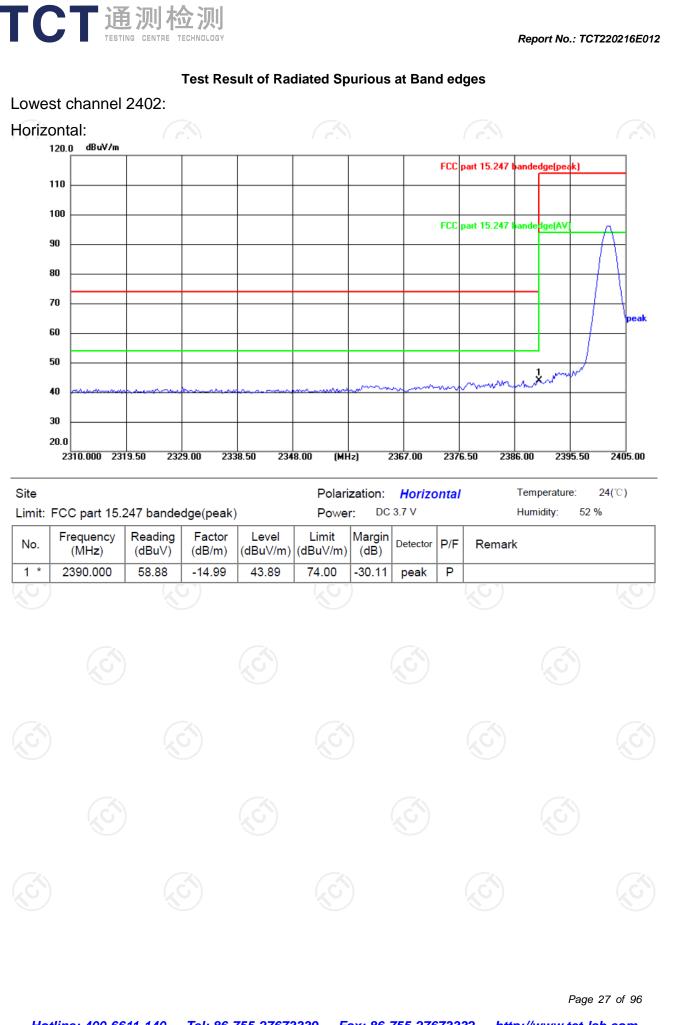
TCT通测检测 TCT通测检测

	1 3m Anecho		r	Polarization: Vertical Power: DC 3.7 V					Temperature: 25.3(C) Humidity: 54 %			
Limit:	FCC Part 150	SRE_3m		1	Po	wer: DC	3.7 V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark			
1	37.6798	6.43	13.75	20.18	40.00	-19.82	QP	Р				
2	62.4314	7.78	12.23	20.01	40.00	-19.99	QP	Ρ				
3	140.3421	10.05	13.17	23.22	43.50	-20.28	QP	Ρ				
4	157.0074	13.30	13.79	27.09	43.50	-16.41	QP	Ρ				
5 *	175.6516	17.25	12.35	29.60	43.50	-13.90	QP	Ρ				
6	248.5519	13.83	12.77	26.60	46.00	-19.40	QP	Ρ				

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

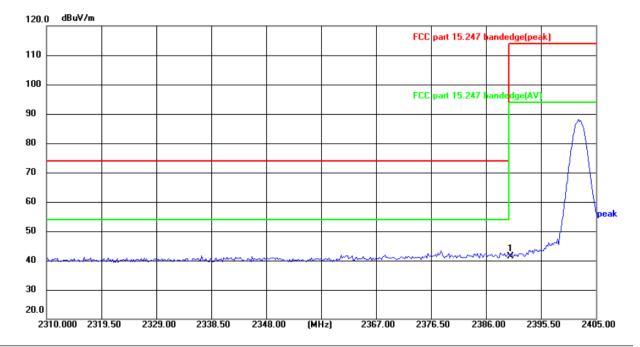
3. Freq. = Emission frequency in MHz


Measurement $(dB\mu V/m) = Reading \ level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

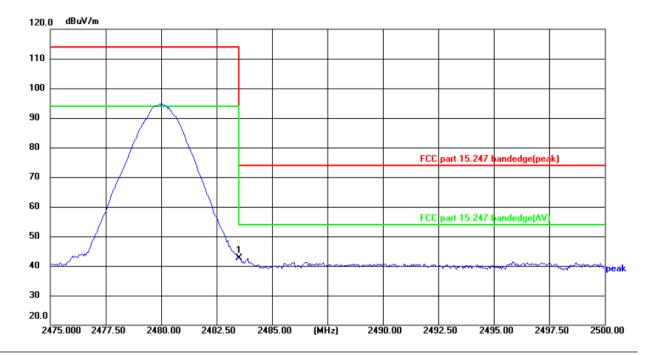
 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$


* is meaning the worst frequency has been tested in the test frequency range.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

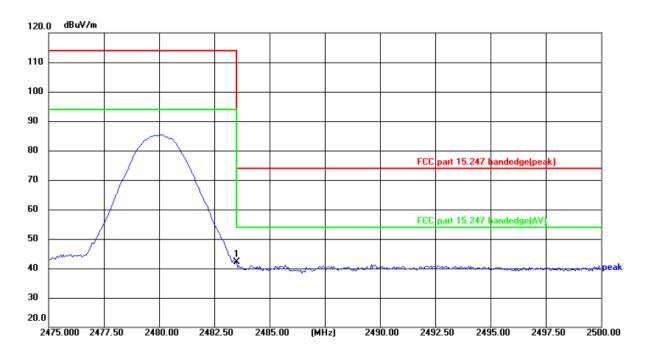
TCT通测检测 TESTING CENTRE TECHNOLOGY


Site			Polarization: Vertical				Temperature: 24(°C)		
Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Hu									Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2390.000	56.39	-14.99	41.40	74.00	-32.60	peak	Ρ	

Page 28 of 96

Highest channel 2480:

Horizontal:


Site					Polariz	zation:	Horizo	ntal	Temperature: 24(℃)
Limit:	FCC part 15.2	47 banded	dge(peak)		Power	: DC	3.7 V		Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	57.29	-14.58	42.71	74.00	-31.29	peak	Ρ	

Page 29 of 96

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site					Polari	zation:	Vertica	al	Temperature: 24(°C)
Limit:	nit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Humidity: 52 %								
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	56.76	-14.58	42.18	74.00	-31.82	peak	Ρ	

Above 1GHz

Modulation	Type: 8D	PSK							
Low channe	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.27		0.66	43.93		74	54	-10.07
7206	Н	33.66		9.50	43.16		74	54	-10.84
	Н					~~			
(C)		() ()			·C`)		$(\mathcal{L}\mathcal{L})$	
4804	V	44.02		0.66	44.68		74	54	-9.32
7206	V	34.59		9.50	44.09		74	54	-9.91
	V								
					- / · · · · · · · · · · · · · · · · · ·				

Middle cha	nnel: 2441	MHz		K.)		XU)		N.
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	44.42		0.99	45.41	<u> </u>	74	54	-8.59
7323	ζOH)	33.85	1,0	9.87	43.72	0	74	54	-10.28
	Ĥ								
4882	V	42.28		0.99	43.27		74	54	-10.73
7323	V	32.96		9.87	42.83		74	54	-11.17
<u> </u>	V			~ ×	· /				

High channel: 2480 MHz

i ngri charn	ICI. 2400 I	/11 12							
Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	A\/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	44.14		1.33	45.47		74	54	-8.53
7440	Н	36.07		10.22	46.29		74	54	-7.71
	Н								
GN)		(.c.)		(.0			$(\dot{\mathbf{O}})$		Ú.
4960	V	45.93		1.33	47.26		74	54	-6.74
7440	V	35.67		10.22	45.89		74	54	-8.11
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

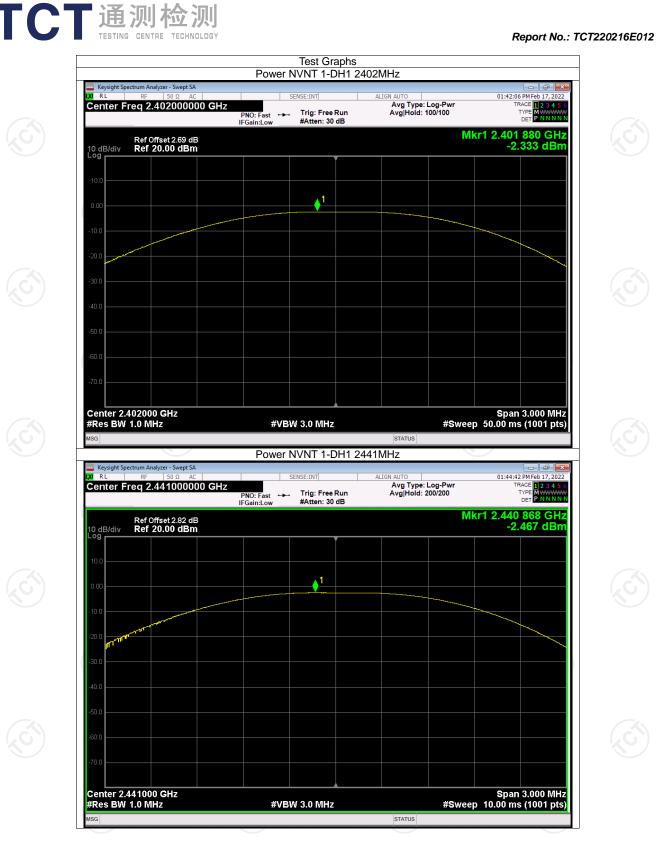
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

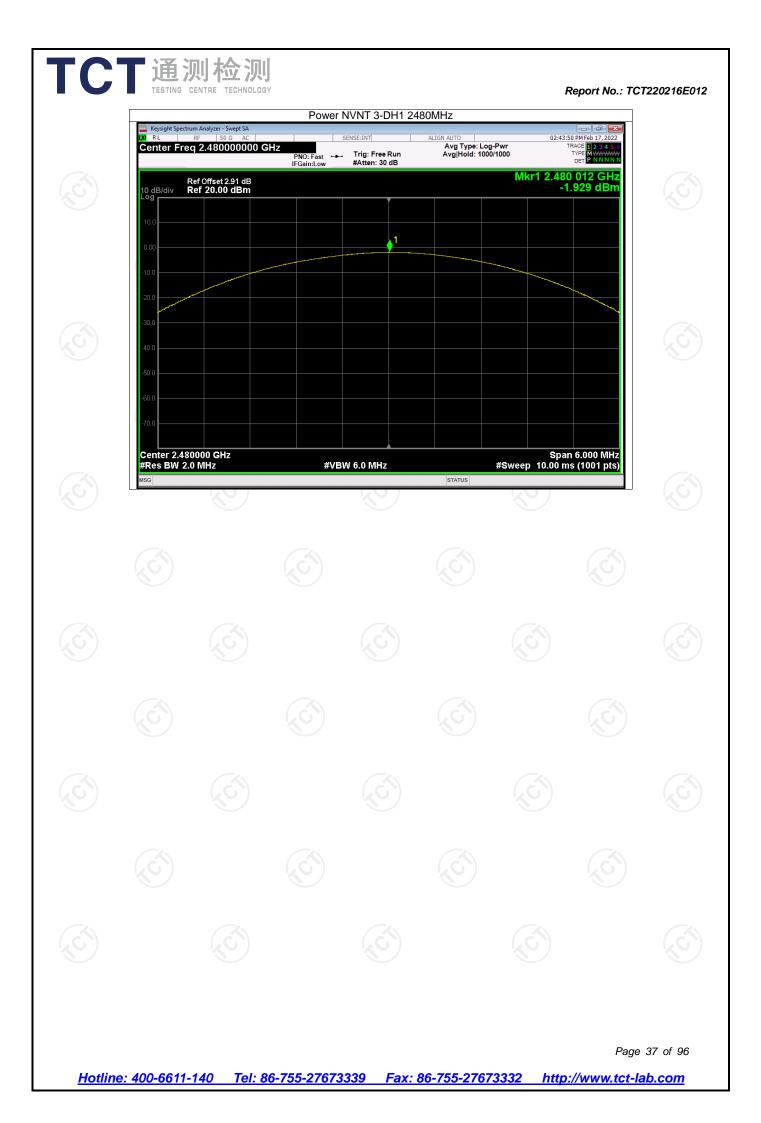
7. All the restriction bands are compliance with the limit of 15.209.



Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.33	30	Pass
NVNT	1-DH1	2441	-2.47	30	Pass
NVNT	1-DH1	2480	-3.48	30	Pass
NVNT	2-DH1	2402	-1.42	21	Pass
NVNT	2-DH1	2441	-1.53	21	Pass
NVNT	2-DH1	2480	-2.53	21	Pass
NVNT	3-DH1	2402	-0.88	21	Pass
NVNT	3-DH1	2441	-0.94	21	Pass
NVNT	3-DH1	2480	-1.93	21	Pass
	(•	

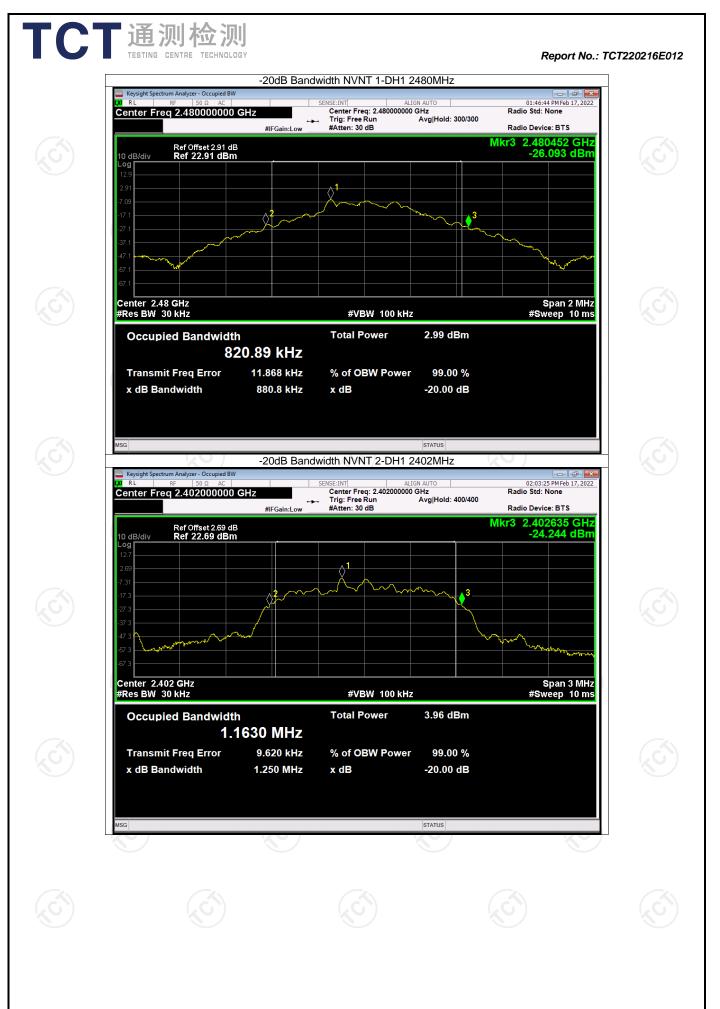

Page 33 of 96

Center Freq 240000000 GHz Ref 20 00 dBm Ref 20 00		Power NVNT 1-DH1 24	480MHz		
Nkr1 2.479 850 CH2 100 3.484 dBm 101 3.484 dBm 102 3.484 dBm 102 3.484 dBm 102 3.444 dBm 102 3.44		PNO: Fast 🛶 Trig: Free Run	Avg Type: Log-Pwr	01:46:27 PM Feb 17, 2022	
100 1	Ref Offset 2.91 dB	IFGain:Low #Atten: 30 dB	Mki	1 2.479 850 GHz	
Center 2.402000 CHz PC of the second character of the	Log				
Center 72.402.000 GHz POWEr NVNT 2-DH1 2402MHz Sweep 1.00 ms (1001 pts) POwer NVNT 2-DH1 2402MHz Center Freq 2.402000000 GHz POWEr NVNT 2-DH1 2402MHz Center Freq 2.402000000 GHz POWER NVNT 2-DH1 2402MHz Center Freq 2.402000000 GHz POWER NVNT 2-DH1 2402MHz Center Freq 2.4022000000 GHz POWER NVNT 2-DH1 2402MHz Freq 2.4022000000 GHz POWER NVNT 2-DH1 2402MHz Sweep 1.00 ms (1001 pts) Sweep 1.00 ms (1001 pts)					
200					
000 000 <td>20.0</td> <td></td> <td></td> <td></td> <td></td>	20.0				
800 800 <td>101 a.</td> <td></td> <td></td> <td></td> <td></td>	101 a.				
600	-40.0				
Visit Span 3.000 MHz #Res BW 1.0 MHz #VEW 3.0 MHz Span 3.000 MHz wsc stratus stratus Power NVNT 2-DH1 2402MHz Center Freq 2.40200000 GHz Stratus Mission Ref Orfset 2.09 db Stratus Processor Autor Autor OctagePart Mission Ref Orfset 2.09 db Stratus Trig: Free Run Avg[Hold: 1000/1000 Trig: Free Run Offician Low #Atten: 30 db Mission 2.000 GHz Stratus Stratus Stratus Oglical Ref Orfset 2.09 db Mission 2.000 dBm Mission 2.000 GHz Stratus Stratus Oglical Ref Orfset 2.09 db Mission 2.000 dBm Stratus Stratus Stratus Oglical Ref Orfset 2.09 db Mission 2.000 dBm Stratus Stratus Oglical Ref Orfset 2.09 db Mission 2.000 dBm Stratus Stratus Oglical Ref Orfset 2.09 db Stratus Stratus Stratus Oglical Stratus Stratus Stratus Str	-50.0				
Span 3.000 MHz WEW 3.0 MHz Syseep 1.000 ms (1001 pts) Stratus Dower NVNT 2-DH1 2402MHz Power NVNT 2-DH1 2402MHz Center Freq 2.402000000 GHz Trig: Free Run IFGeint.ow Aug Type: Log-Pwr AvgIye: Log-Pwr AvgIye: Log-Pwr AvgIye: Log-Owr Tric: Freq 2.402000000 GHz Trig: Free Run IFGeint.ow Trig: Free Run IFGeint.ow Avg Type: Log-Pwr AvgIyeid: 1000/1000 Trig: Free Run IFGeint.ow Trig: Free Run IFGeint.ow Trig: Free Run IFGeint.ow Other T 2.402 240 GHz Trig: Free Run IFGeint.ow Trig: Free Run IFGeint.	-60.0				
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Msg paratus Power NVNT 2-DH1 2402MHz Power NVNT 2-DH1 2402MHz Center Freq 2.402000000 GHz PNO: Fast	-70.0				
Power NVNT 2-DH1 2402MHz		#VBW 3.0 MHz	Sweep	Span 3.000 MHz 1.000 ms (1001 pts)	
Keyzigit Spectrum Analyzer - Skept SA			STATUS		
Ref Offset 2.89 dB Mkr1 2.402 240 GHz 10 -1.418 dBm 10 -1 00 -1 <td>LXI RL RF 50 Ω AC</td> <td>SENSE:INT</td> <td></td> <td>02:03:02 PM Feb 17, 2022</td> <td></td>	LXI RL RF 50 Ω AC	SENSE:INT		02:03:02 PM Feb 17, 2022	
10 dB/div Ref 20.00 dBm -1.418 dBm 10 dB/div 1 1 00 dB/div 1 1 10 dD/div 1 1<	Center Freq 2.402000000 GHz	PNO: Fast +++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 123456 TYPE MWWWWW DET PNNNNN	
100 1 100 1	Ref Offset 2.69 dB 10 dB/div Ref 20.00 dBm		Mki	1 2.402 240 GHz -1.418 dBm	
000 000 100 000 200 000 300 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 0000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400 000 400					
200 300 400 400 400 -00 -00 -00 -00 -	0.00	▲			
300 400 400 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 600 400 700 400 700 500 600 600 700 600 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 7	-10.0				
-40.0 -40.0 -50.0 - -60.0 - -70.0	-20.0				
-50 0 -50 0 -60 0 -70 0 -7	-30.0				
60.0 70.0 <td< td=""><td>-40.0</td><td></td><td></td><td></td><td></td></td<>	-40.0				
-70.0					
Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz #Sweep 10.00 ms (1001 pts)					
#Res BW 2.0 MHz #VBW 6.0 MHz #Sweep 10.00 ms (1001 pts)					
MSG	#Res BW 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 10.00 ms (1001 pts)	
	MSG		STATUS		

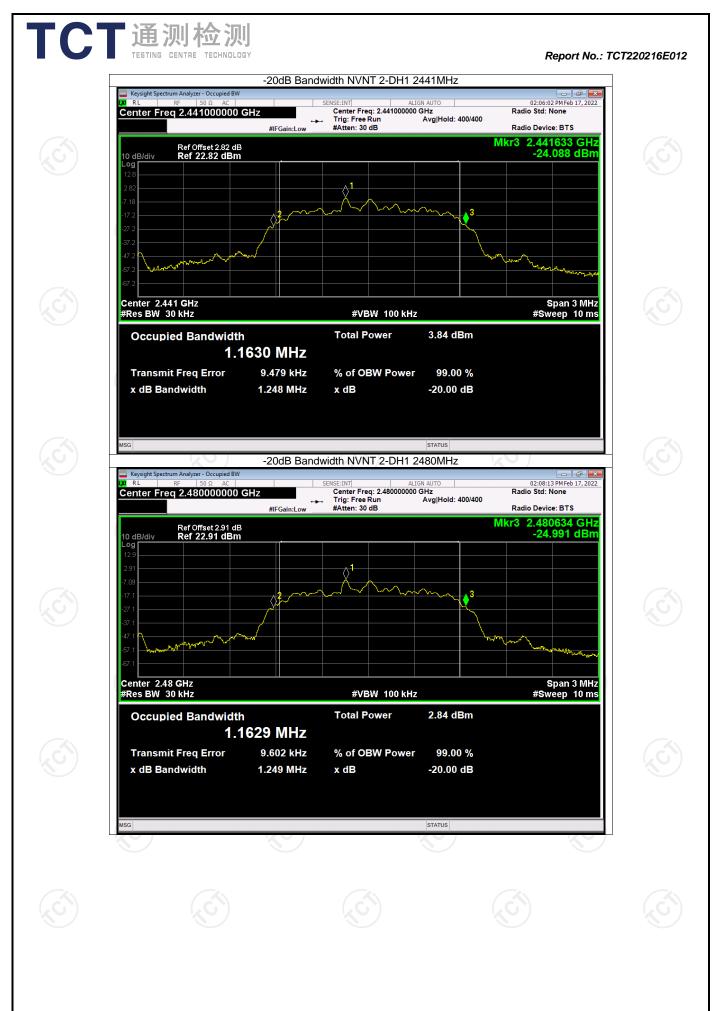
Keysight	Spectrum Analyzer - Swept SA RF 50 Ω AC		NNT 2-DH1 244	ALIGN AUTO	02:05:40 PM Feb 17, 2022	_
	Freq 2.441000000 GH		Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN	
10 dB/div	Ref Offset 2.82 dB Ref 20.00 dBm			Mk	r1 2.441 198 GHz -1.531 dBm	6.0
			Ĭ			
0.00			1			
-10.0						
-20.0						
-30.0						
-40.0						
-50.0						
-60.0						
-70.0						
Center 2	2.441000 GHz	#\/D\			Span 6.000 MHz	
MSG	W 2.0 MHz		(6.0 MHz	STATUS	10.00 ms (1001 pts)	6
Keysight	Spectrum Analyzer - Swept SA		VNT 2-DH1 248			
Center	RF 50 Ω AC Freq 2.480000000 GH	PNO: Fast ++++	Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	02:07:48 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 2.91 dB	IFGain:Low	#Atten: 30 dB	Mk	r1 2.480 132 GHz -2.526 dBm	
10 dB/div Log	Ref 20.00 dBm		Ţ		2.020 0.011	
10.0						
0.00			\			
-10.0						
-20.0						
-40.0						
40.0						
-50.0						
-50.0						
-60.0	490000 GH7				Spap 6 000 MHz	
-60.0	2.480000 GHz N 2.0 MHz	#VBW	(6.0 MHz		Span 6.000 MHz 10.00 ms (1001 pts)	
-60.0	2.480000 GHz V 2.0 MHz	#VBW	(6.0 MHz	#Sweep	Span 6.000 MHz 10.00 ms (1001 pts)	
-60.0	2.480000 GHz V 2.0 MHz	#VBW	f 6.0 MHz		Span 6.000 MHz 10.00 ms (1001 pts)	
-60.0 -70.0 Center : #Res B\	2.480000 GHz V 2.0 MHz	#VBW	/ 6.0 MHz		Span 6.000 MHz 10.00 ms (1001 pts)	
-60.0 -70.0 Center ; #Res B\	2.480000 GHz V 2.0 MHz	#VBW	(6.0 MHz		Span 6.000 MHz 10.00 ms (1001 pts)	

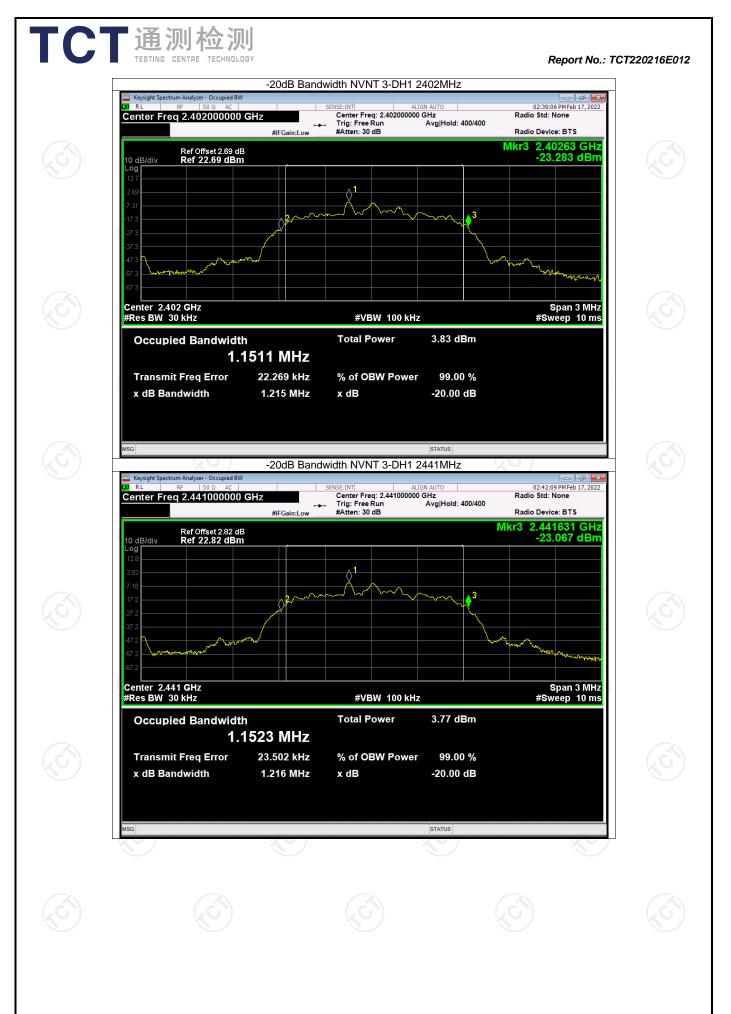
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

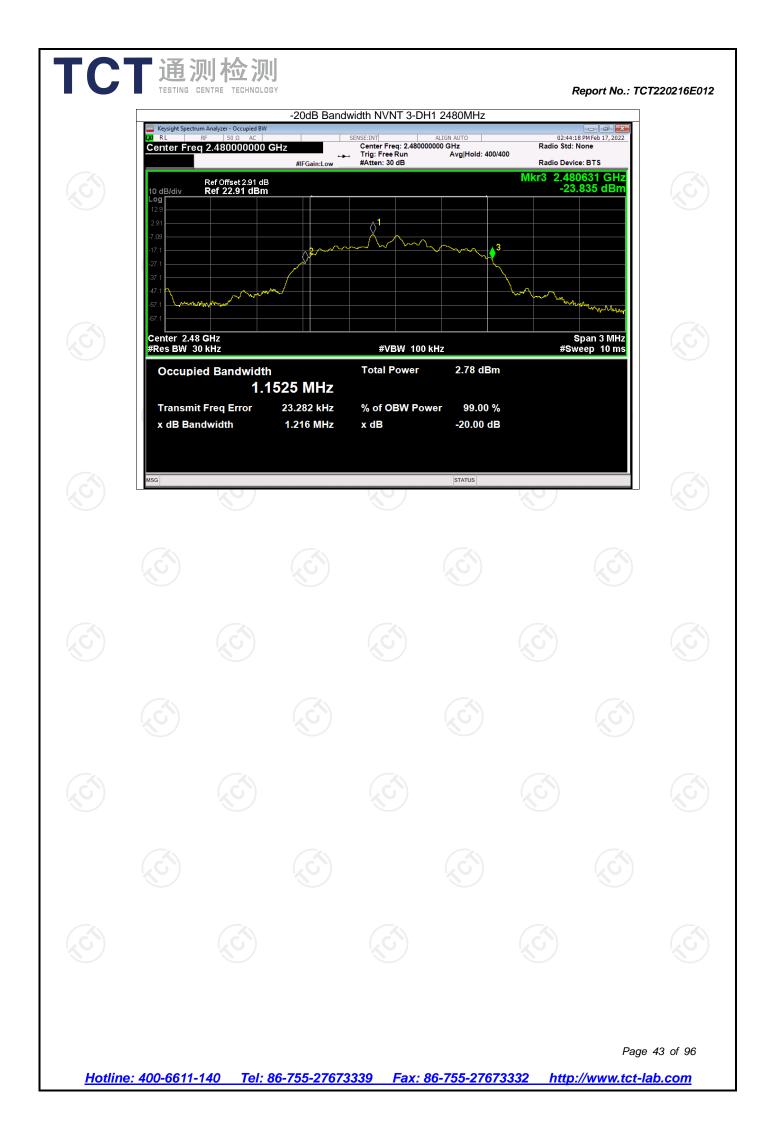
Keysight Spec	ctrum Analyzer - Swept SA RF 50 Ω AC	Power NVNT 3-DH1 2	2402MHz	02:38:40 PM Feb 17, 2022	
	eq 2.402000000 GH		Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	
10 dB/div	Ref Offset 2.69 dB Ref 20.00 dBm		Mkr1	2.401 958 GHz -0.879 dBm	
10 dB/div Log					
10.0		1			
0.00					
-10.0					
-30.0					
-40.0					
-50.0					
-60.0					
-70.0					
#Res BW 2	02000 GHz 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 0.00 ms (1001 pts)	
MSG	Ky /	Power NVNT 3-DH1 2	status 2441MHz	7	
LXI RL	ctrum Analyzer - Swept SA RF 50 Ω AC eq 2.441000000 GH	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:41:42 PM Feb 17, 2022 TRACE 12, 3, 4, 5, 6	
Contor T	64 2.44 1000000 CI	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	
10 dB/div Log	Ref Offset 2.82 dB Ref 20.00 dBm		мкг	2.441 018 GHz -0.942 dBm	
10.0					
0.00		1			
-10.0					
-10.0					
-20.0					
-20.0					
-20.0 -30.0 -40.0					
-20.0 -30.0 -40.0 -50.0					
-20.0 -30.0 -40.0 -50.0 -60.0 -70.0	41000 GHz			Span 6.000 MHz	
-20.0 -30.0 -40.0 -50.0 -60.0 -70.0	41000 GHz 2.0 MHz	#VBW 6.0 MHz	#Sweep 1	Span 6.000 MHz 0.00 ms (1001 pts)	
-20.0 -30.0 -40.0 -50.0 -50.0 -70.0 -70.0 Center 2.4 #Res BW 2	41000 GHz 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 0.00 ms (1001 pts)	
-20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.4 #Res BW 2	41000 GHz 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 0.00 ms (1001 pts)	
-20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.4 #Res BW 2	41000 GHz 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 0.00 ms (1001 pts)	
-20.0 -30.0 -40.0 -50.0 -50.0 -70.0 Center 2.4 #Res BW 2	41000 GHz 2.0 MHz	#VBW 6.0 MHz		Span 6.000 MHz 0.00 ms (1001 pts)	


|--|

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.876	Pass
NVNT	1-DH1	2441	0.876	Pass
NVNT	1-DH1	2480	0.881	Pass
NVNT	2-DH1	2402	1.250	Pass
NVNT	2-DH1	2441	1.248	Pass
NVNT	2-DH1	2480	1.249	Pass
NVNT	3-DH1	2402	1.215	Pass
NVNT	3-DH1	2441	1.216	Pass
NVNT	3-DH1	2480	1.216	Pass


Page 38 of 96




Page 40 of 96

Page 41 of 96

Page 42 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

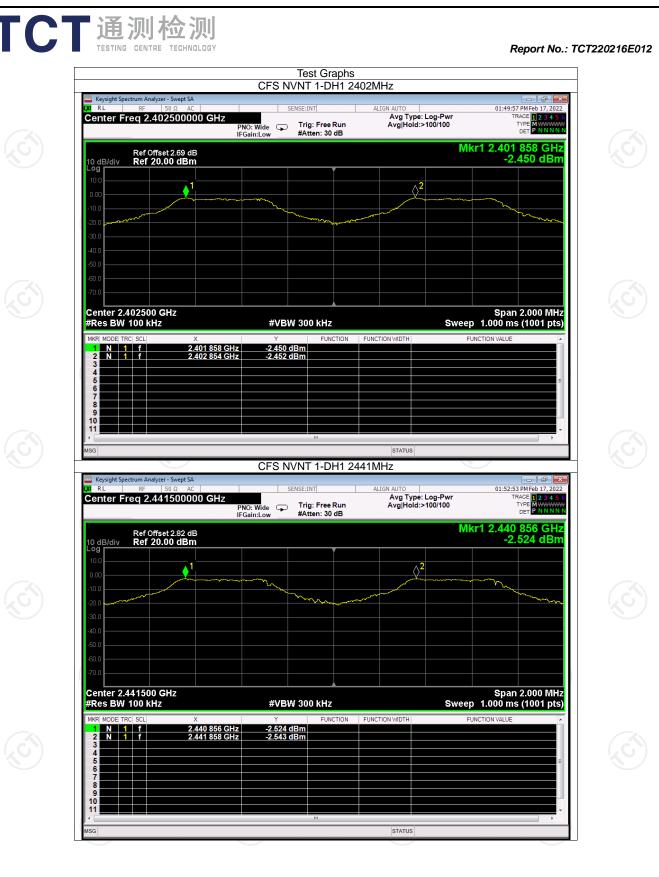
Contantion	mouc	(MHz)	(MHz)	(MHz)	(MHz)	Verdiet
NVNT	1-DH1	2401.858	2402.854	0.996	0.881	Pass
NVNT	1-DH1	2440.856	2441.858	1.002	0.881	Pass
NVNT	1-DH1	2478.862	2479.858	0.996	0.881	Pass
NVNT	2-DH1	2401.856	2402.852	0.996	0.833	Pass
NVNT	2-DH1	2440.858	2441.862	1.004	0.833	Pass
NVNT	2-DH1	2478.86	2479.856	0.996	0.833	Pass
NVNT	3-DH1	2401.854	2402.854	1.000	0.811	Pass
NVNT	3-DH1	2440.85	2441.856	1.006	0.811	Pass
NVNT	3-DH1	2478.858	2479.856	0.998	0.811	Pass

Carrier Frequencies Separation Hopping Freq1 Hopping Freq2

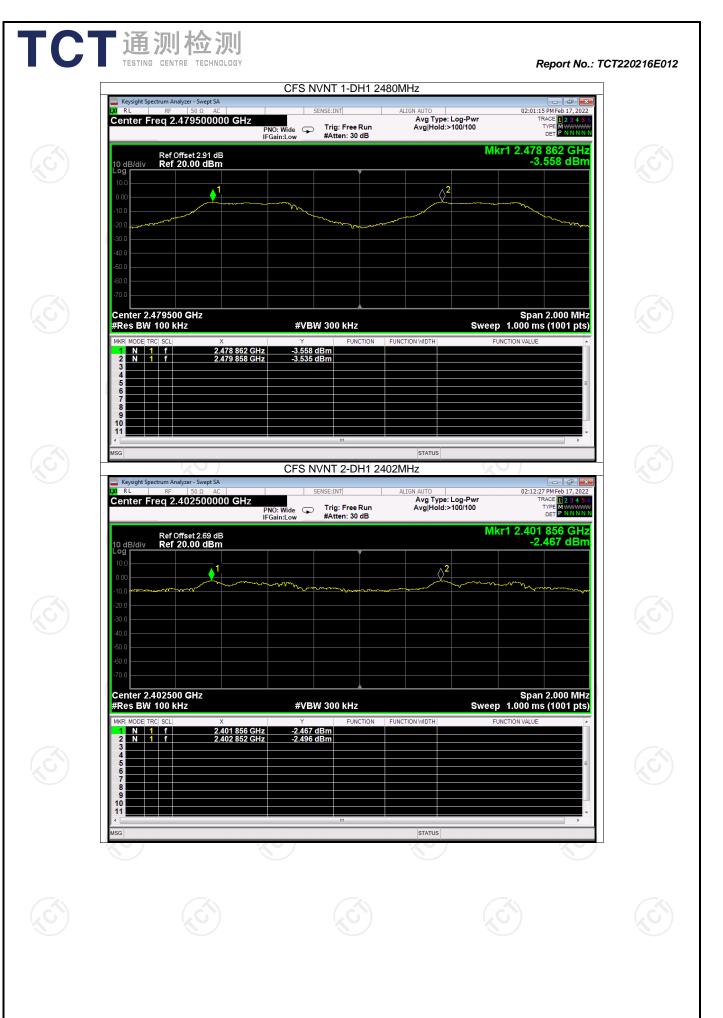
Report No.: TCT220216E012

Verdict

Page 44 of 96

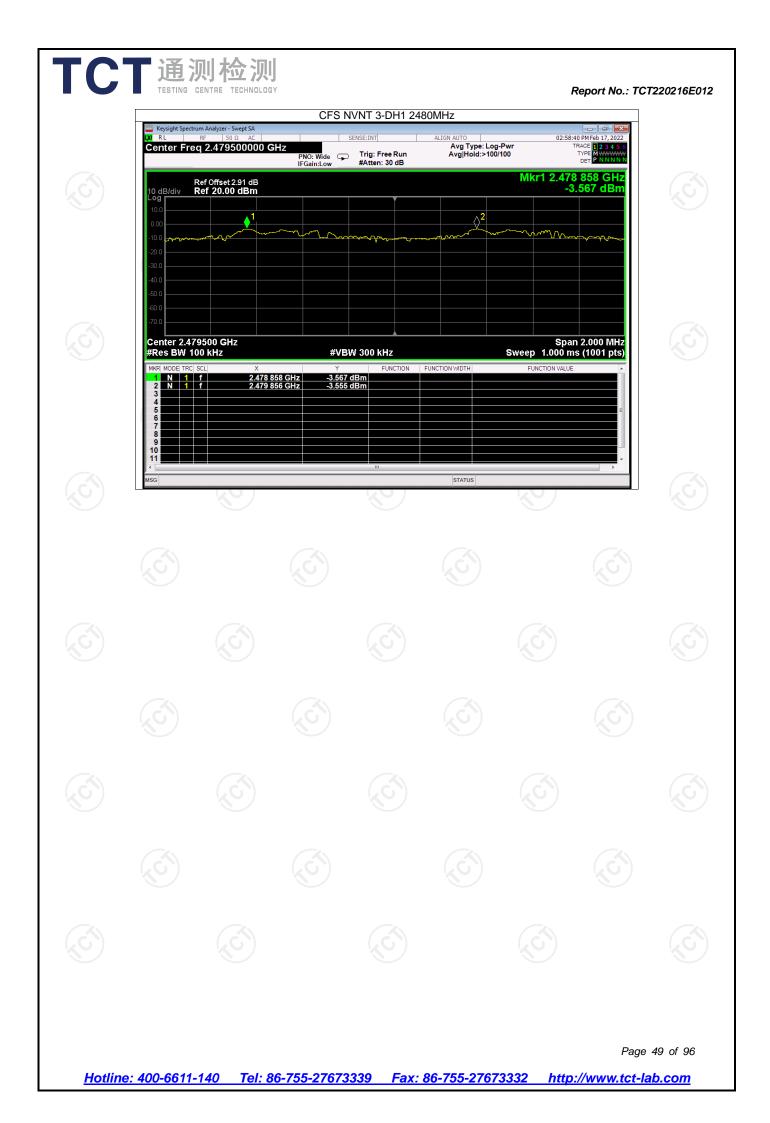

Limit

HFS



Mode

Condition



	CFS NVNT 2-DH1	2441MHz	
Keysight Spectrum Analyzer	0 Ω AC SENSE:INT 500000 GHz PNO: Wide Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:17:00 PMFeb 17, 2022 TRACE 1 2, 4 5 6 TYPE 1 23 4 5 6 TYPE 1 23 4 5 6 DET P N N N N N
Ref Offset 10 dB/div Ref 20.0	IFGain:Low #Atten: 30 dB 2.82 dB 0 dBm	Mkr1 :	2.440 858 GHz -2.548 dBm
10.0 0.00			
-10.0			
-30.0			
-60.0			
Center 2.441500 GI #Res BW 100 kHz	tz #VBW 300 kHz	Sweep 1.0	Span 2.000 MHz 000 ms (1001 pts)
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3	X Y FUNCTION 2.440 858 GHz -2.548 dBm 2.441 862 GHz -2.582 dBm	I FUNCTION WIDTH FUNCTIO	N VALUE
4 5 6 7			E
8 9 10 11			
MSG		STATUS	· · · · · · · · · · · · · · · · · · ·
Keysight Spectrum Analyzer -	0 Ω AC SENSE:INT	ALIGN AUTO	02:22:41 PM Feb 17, 2022
Center Freq 2.479	PNO: Wide Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 2 2 3 4 5 6 TYPE MWWWWW DET P NNNNN 2.478 860 GHz
Ref Offset 10 dB/div Ref 20.0	2.91 dB 0 dBm		-3.558 dBm
0.00		2 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-20.0			
-40.0			
-60.0			
Center 2.479500 GF #Res BW 100 kHz	#VBW 300 kHz x y function		Span 2.000 MHz 100 ms (1001 pts) NVALUE
1 N 1 f	2.478 860 GHz -3.558 dBm 2.479 856 GHz -3.576 dBm		
2 N 1 f 3 4			
2 N 1 f 3 4 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
2 N 1 f 3 4 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	m		
2 N 1 f 3 4 5 5 6 7 7 8 9 9 9 10		STATUS	,
2 N 1 F 3 4 4 5 6 6 7 7 8 8 9 9 10 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1		STATUS	,
2 N 1 F 3 4 4 5 6 6 7 7 8 8 9 9 10 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1		STATUS	

		CFS NVNT 3-DH1 24	02MHz	Report No.: TC	
LXI RL	ectrum Analyzer - Swept SA RF 50 Ω AC req 2.402500000 GHz	PNO: Wide Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:50:15 PM Feb 17, 2022 TRACE 12 3 4 5 6 TYPE MWWWW DET P.N.N.N.N.N	
10 dB/div	Ref Offset 2.69 dB Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mk	1 2.401 854 GHz -2.498 dBm	
Log 10.0 0.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	²	1 mm - mm -	
-10.0					
-40.0					
-70.0					
#Res BW		#VBW 300 kHz		Span 2.000 MHz 1.000 ms (1001 pts)	
MKR MODE TR	f 2.401 854 G		FUNCTION WIDTH FUN	ICTION VALUE	
4 5 6 7 8				6	
9 10 11				•	
MSG	1201	CFS NVNT 3-DH1 24	STATUS		
LXI RL	ectrum Analyzer - Swept SA RF 50 Ω AC req 2.441500000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:52:27 PM Feb 17, 2022 TRACE 12 3 4 5 6	
		PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN T1 2.440 850 GHz	
10 dB/div Log 10.0	Ref Offset 2.82 dB Ref 20.00 dBm			-2.664 dBm	
0.00 -10.0 v2,~~		m Manan m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	
-20.0					
-60.0					
-70.0	441500 GHz			Span 2.000 MHz	
#Res BW	100 KHz RC SCL X		-	1.000 ms (1001 pts)	
2 N 3 4 5		Hz -2.580 dBm			
6 7 8 9					
		m.			
MSG			STATUS		

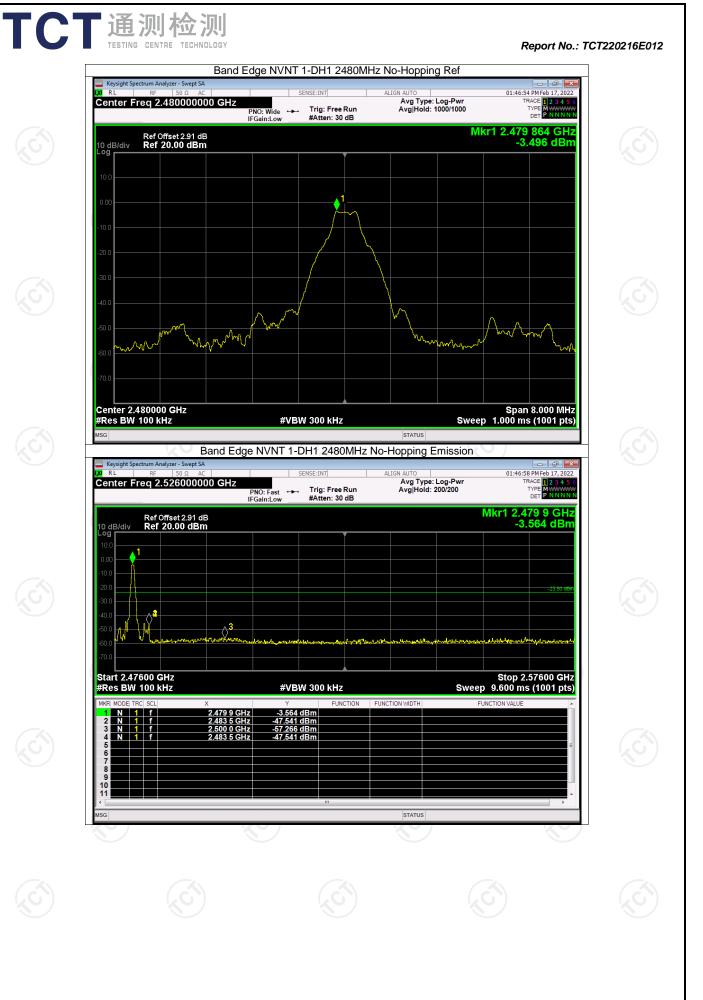
Condition	Mode	(MHz)	Mode	(dBc)	(dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-52.43	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-44.04	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-51.12	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-44.50	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-52.84	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-46.13	-20	Pass

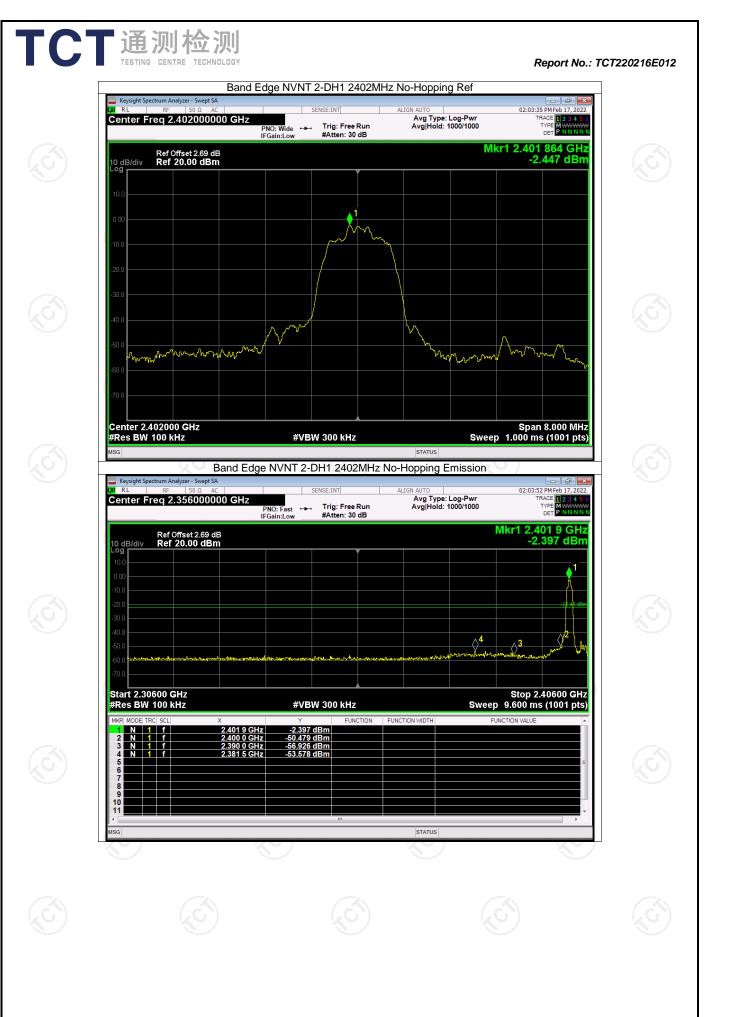
Band Edge

Max Value

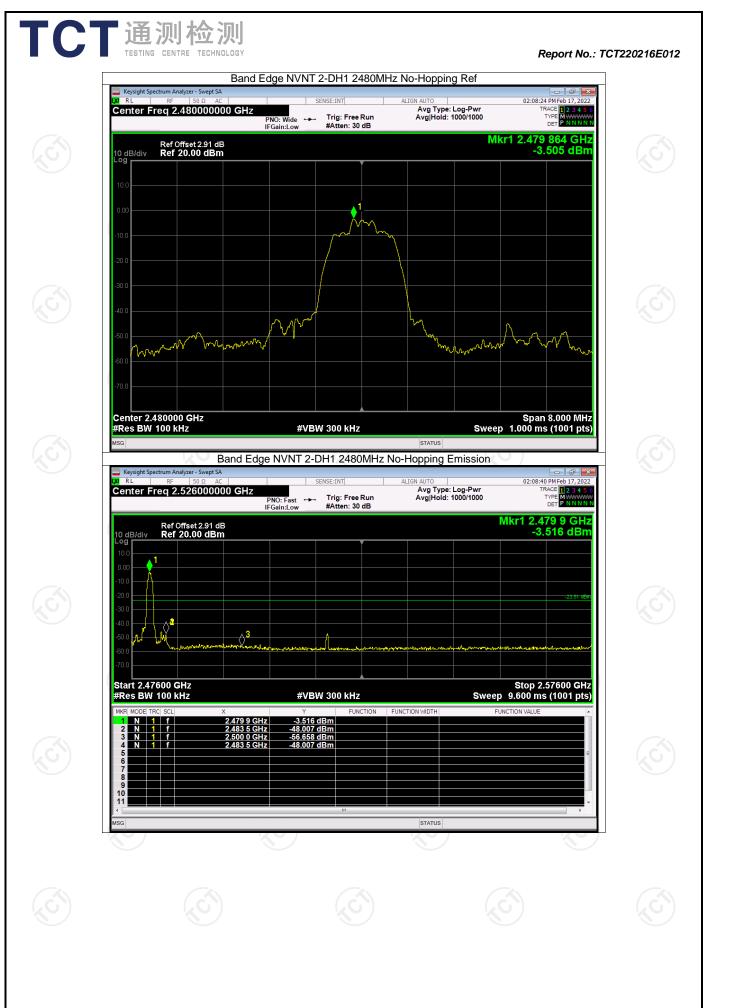
Report No.: TCT220216E012

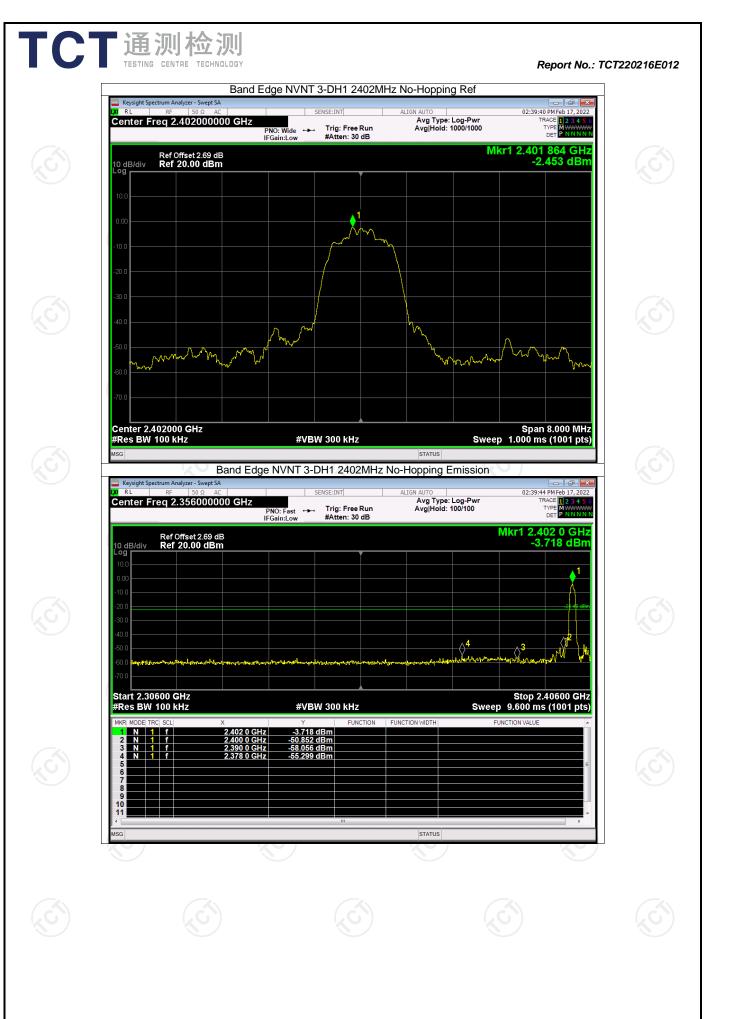
Page 50 of 96

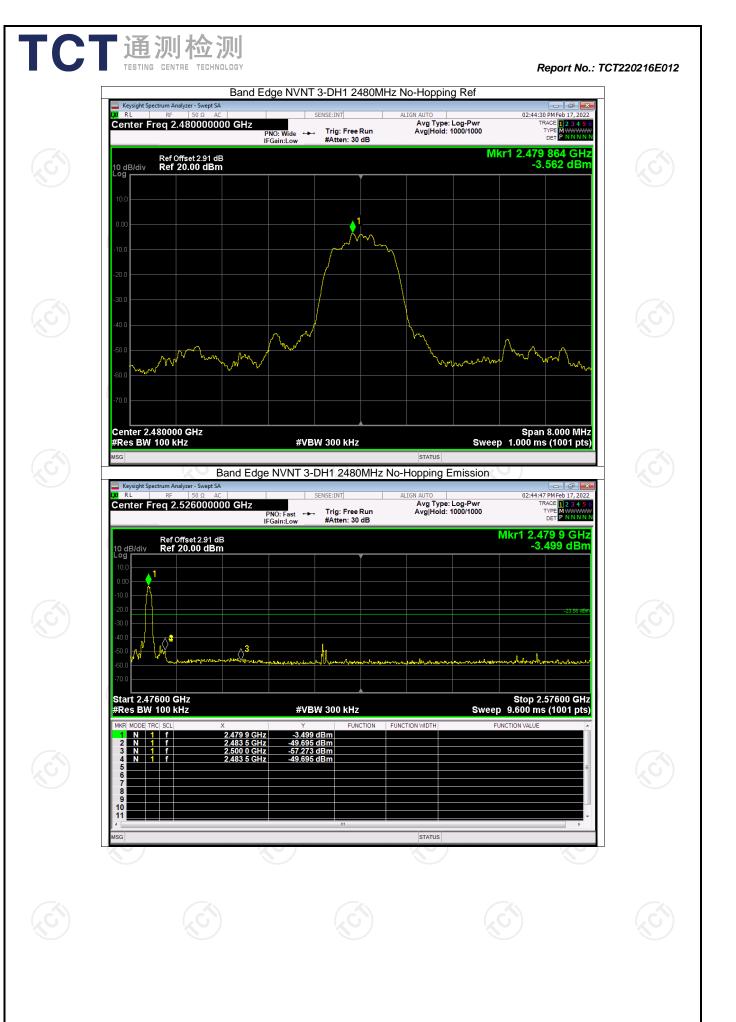

Limit



Frequency







Page 53 of 96

Page 56 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

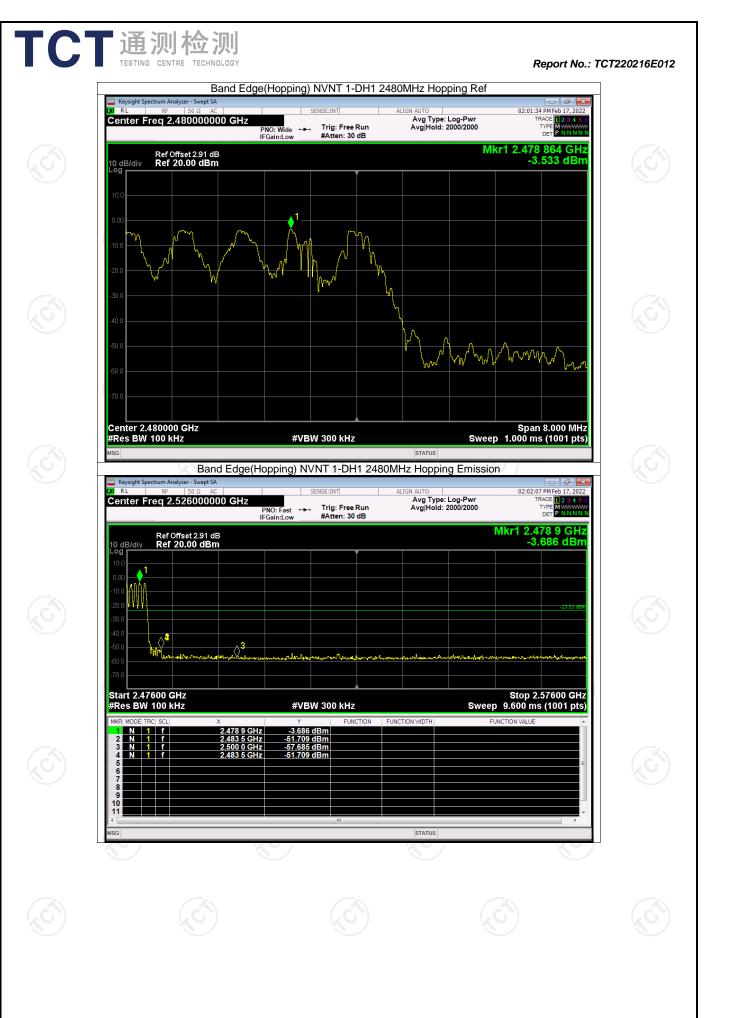
oonanion	mouc	(MHz)	Mode	(dBc)	(dBc)	Vertaiet
NVNT	1-DH1	2402	Hopping	-52.85	-20	Pass
NVNT	1-DH1	2480	Hopping	-48.17	-20	Pass
NVNT	2-DH1	2402	Hopping	-52.23	-20	Pass
NVNT	2-DH1	2480	Hopping	-45.52	-20	Pass
NVNT	3-DH1	2402	Hopping	-52.59	-20	Pass
NVNT	3-DH1	2480	Hopping	-50.17	-20	Pass

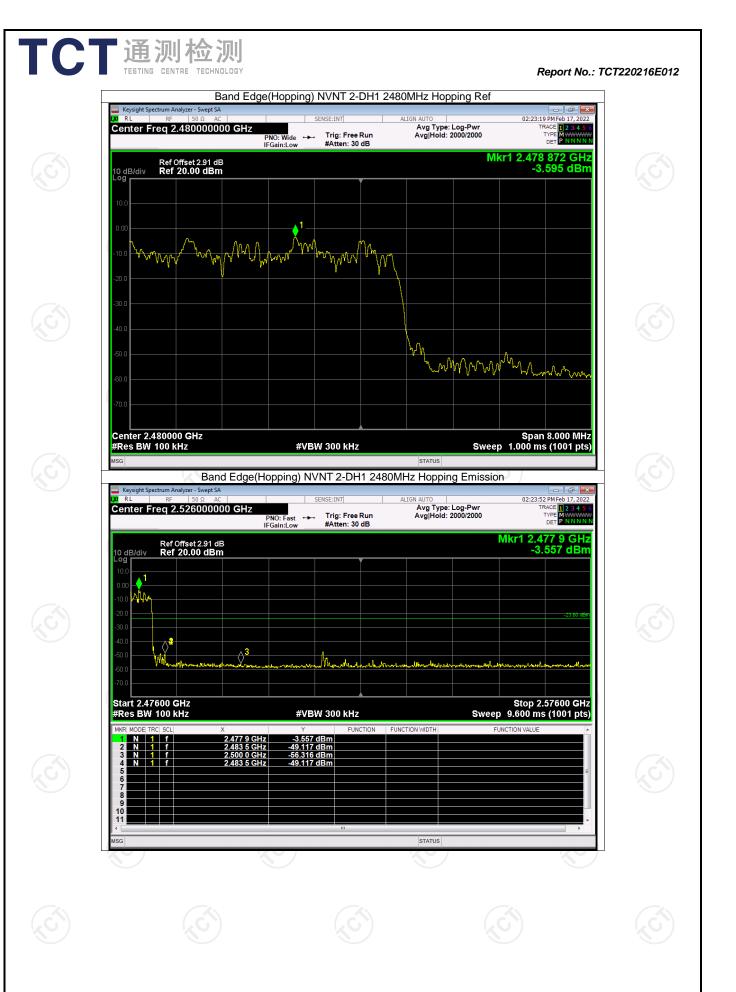
Band Edge(Hopping) Max Value

				U/		
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-52.85	-20	Pass
NVNT	1-DH1	2480	Hopping	-48.17	-20	Pass
NVNT	2-DH1	2402	Hopping	-52.23	-20	Pass
NVNT	2-DH1	2480	Hopping	-45.52	-20	Pass
NVNT	3-DH1	2402	Hopping	-52.59	-20	Pass
	3-DH1	2480	Hopping	-50 17	-20	Dass

Page 57 of 96

Report No.: TCT220216E012




Page 58 of 96

Page 59 of 96

LXI RL	ght Spectrum Analyzer - Swept SA RF 50 Ω AC	Edge(Hopping) NVNT 2-DH1	ALIGN AUTO	02:12:46 PM Feb 17, 2022	
Cente	er Freq 2.402000000 Gł	IZ PNO: Wide → Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 2000/2000	TRACE 123456 TYPE MWWWW DET PNNNNN	
10 dB/d Log	Ref Offset 2.69 dB div Ref 20.00 dBm		Mkr	1 2.405 872 GHz -2.363 dBm	
10.0					
0.00				1	
-10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.white	MANNA	
-20.0					
-30.0					
-40.0		A AAN			
-50.0	mm Mm M	non WIV			
-60.0					
	r 2.402000 GHz BW 100 kHz	#VBW 300 kHz	Sweep	Span 8.000 MHz 1.000 ms (1001 pts)	
MOG	Band Ed	ge(Hopping) NVNT 2-DH1 240			
LXI RL	ht Spectrum Analyzer - Swept SA RF 50 Ω AC F Freq 2.356000000 GH	SENSE:INT	ALIGN AUTO	02:13:18 PM Feb 17, 2022 TRACE 12 3:4 5 6 TYPE M	
LXI RL	ght Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Kr1 2.405 9 GHz	
Cente 10 dB/	ht Spectrum Analyzer - Swept SA RF 50.0. AC Pr Freq 2.3560000000 GH Ref Offset 2.69 dB	Z PN0: Fast →→→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	
10 dB/ Log 10 0 -	ht Spectrum Analyzer - Swept SA RF 50.0. AC er Freq 2.356000000 GH Ref Offset 2.69 dB	Z PN0: Fast →→→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Kr1 2.405 9 GHz	
LM RL Cente 10 dB/ Log	ht Spectrum Analyzer - Swept SA RF 50.0. AC er Freq 2.356000000 GH Ref Offset 2.69 dB	Z PN0: Fast →→→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Kr1 2.405 9 GHz	
10 dB/ Log 10.0 -100 -20.0	ht Spectrum Analyzer - Swept SA RF 50.0. AC er Freq 2.356000000 GH Ref Offset 2.69 dB	Z PN0: Fast →→→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Kr1 2.405 9 GHz	
Image: Weight of the second	ht Spectrum Analyzer - Swept SA RF 50.0. AC er Freq 2.356000000 GH Ref Offset 2.69 dB	Z PN0: Fast →→→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN Kr1 2.405 9 GHz	
10 dB/ 10.0 0.0 10.0 0.0 -10.0 - -10.0 - -20.0 - -30.0 - -40.0 - -50.0 - -70.0 - Start -	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 Gł	IZ PNO: Fast IFGain:Low	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 4 3 5top 2:40600 GHz	
10 dB/ Log 100 -100 -100 -200 -300 -300 -300 -300 -300 -300 -3	RF SO AC RF SO AC C Pr Freq 2.356000000 GH G Ref Offset 2.69 dB G div Ref 20.00 dBm G 2.30600 GHz G G BW 100 kHz C C Del TRC SCL X C	IZ PNO: Fast IFGain:Low Figure 1 PNO: Fast Figure	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12, 34 - 5 TYPE MUMMUN per P NNNNN kr1 2.405 9 GHz -2.387 dBm 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	
10 BL 10 BL 10 BL 100 0.00 -100 - -200 - -300 - -400 - -500 - -700 - Start #Res MKR 1 2 N 3 N 4 N	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	IZ PNO: Fast IFGain:Low FIGURE 100 FIGURE 1	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
IO RL Center 10 dBJ 100 - 100 - 100 - 100 - 100 - 100 - - -	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	+Z SENSE:INT PNO: Fast IF Gain:Low → Trig: Free Run #Atten: 30 dB #VBW 300 kHz # #VBW 300 kHz FUNCTION 9 GHz -2.387 dBm - 57.080 dBm	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
10 dB/ 10 dB/ 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 20 0 -000 - -000 <td< td=""><td>RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC</td><td>+Z </td><td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000</td><td>02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td></td></td<>	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	+Z	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
10 dB/ 10 dB/ 10 0 10 0 10 0 -10 0 -10 0 -20 0 -30 0 -40 0 -50 0 -50 0 Start #Res MKR MKR 1 M 2 N 3 N 4 N 5 6 7 8 9 10	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	+Z SENSE:INT PNO: Fast IF Gain:Low → Trig: Free Run #Atten: 30 dB #VBW 300 kHz # #VBW 300 kHz FUNCTION 9 GHz -2.387 dBm - 57.080 dBm	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
10 dB/ Logg -0 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 <td>RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC</td> <td>+Z </td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000</td> <td>02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td></td>	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	+Z	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
10 dB/ Logg -0 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 -10 0 <td>RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC</td> <td>+Z </td> <td>ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000</td> <td>02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td></td>	RF 50 Ω AC RF 50 Ω AC Pr Freq 2.356000000 GH AC AC Ref Offset 2.69 dB AC AC Ref Offset 2.69 dB AC AC AC AC AC	+Z	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:13:18 PM Feb 17, 2022 TRACE 12: 4 - 5 9 GHz -2: 387 dBm 1 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	

Page 60 of 96

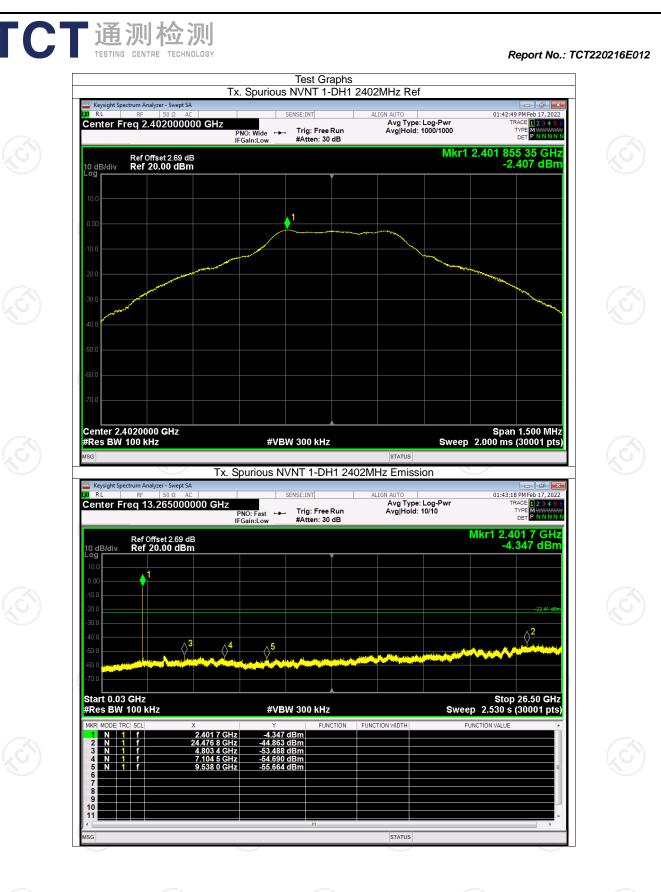
Page 61 of 96

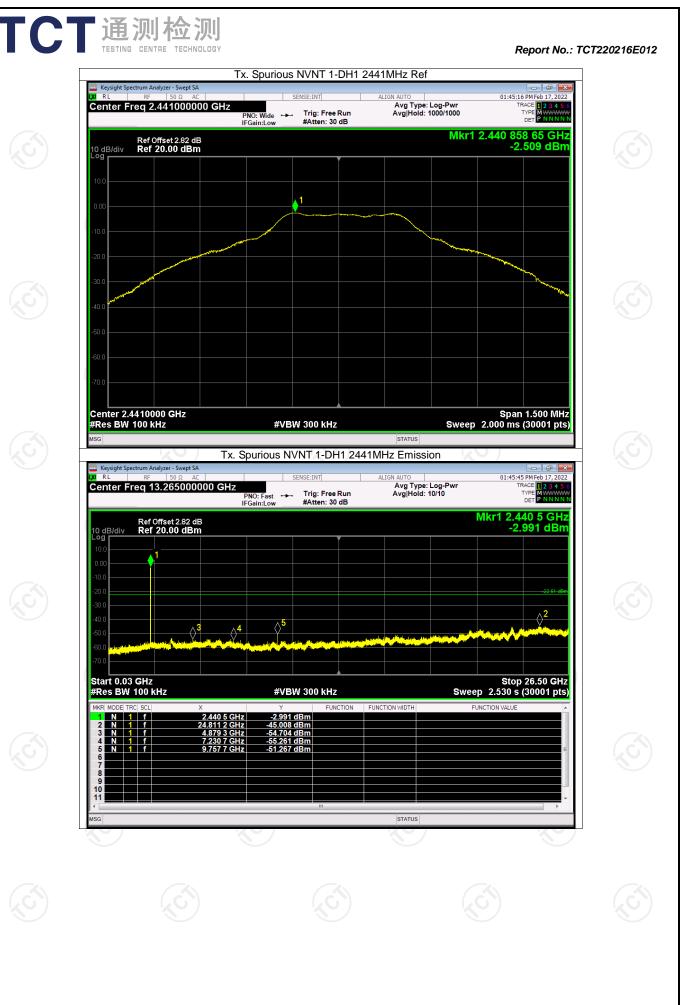
	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TO	T220216E012
	Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Ref	
<u>(</u>	IFGain:Low #Atten: 30 dB Mkr1 2.402 864 GHz 10 dB/div Ref 20.00 dBm -2.504 dBm 100 1 -2.504 dBm	
S)	-100 -200 -200 -300 -400 -600 -600	
<u>(</u>)	-70 0 Center 2.402000 GHz Span 8.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) Msci status Msci status Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Emission Keysight Spectrum Analyzer - Sweet SA RL RL RL So Ac Senter Freq 2.356000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run Avg Type: Log-Pwr Trace PNO: Fast Trig: Free Run Avg Type: Log-Pwr Trace Det MINNN Det MINNN Det MINNN Mkr1 2.403 9 GHz	
S)	Ref Offset 2.69 dB -3.105 dBm 10 dB/div Ref 20.00 dBm -3.105 dBm 100 -3.105 dBm -3.105 dBm -000 -3.105 dBm -3.105 dBm	
<u>s</u>	Start 2.30600 GHz Stop 2.40600 GHz #Res BW 100 kHz #VEW 300 kHz Sweep 9.600 ms (1001 pts) MMR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 1 1 2.400 0 GHz -3.105 dBm -3.105 dBm -3.105 dBm 3 N 1 f 2.400 0 GHz -56.946 dBm -56.990 dBm	
S)		

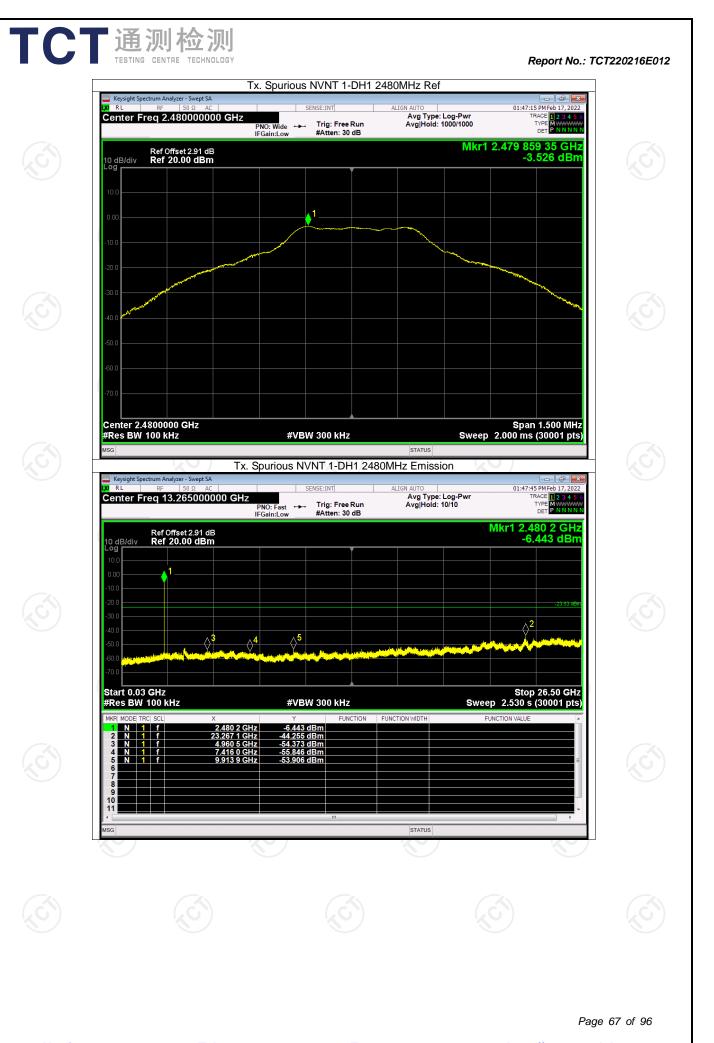
Page 63 of 96

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	1-DH1	2402	-42.45	-20	Pass	
NVNT	1-DH1	2441	-42.49	-20	Pass	
NVNT	1-DH1	2480	-40.72	-20	Pass	
NVNT	2-DH1	2402	-42.23	-20	Pass	
NVNT	2-DH1	2441	-42.88	-20	Pass	
NVNT	2-DH1	2480	-41.57	-20	Pass	
NVNT 🚫	3-DH1	2402	-42.71	-20	Pass	
NVNT	3-DH1	2441	-42.79	-20	Pass	
NVNT	3-DH1	2480	-40.97	-20	Pass	
	(







Page 64 of 96

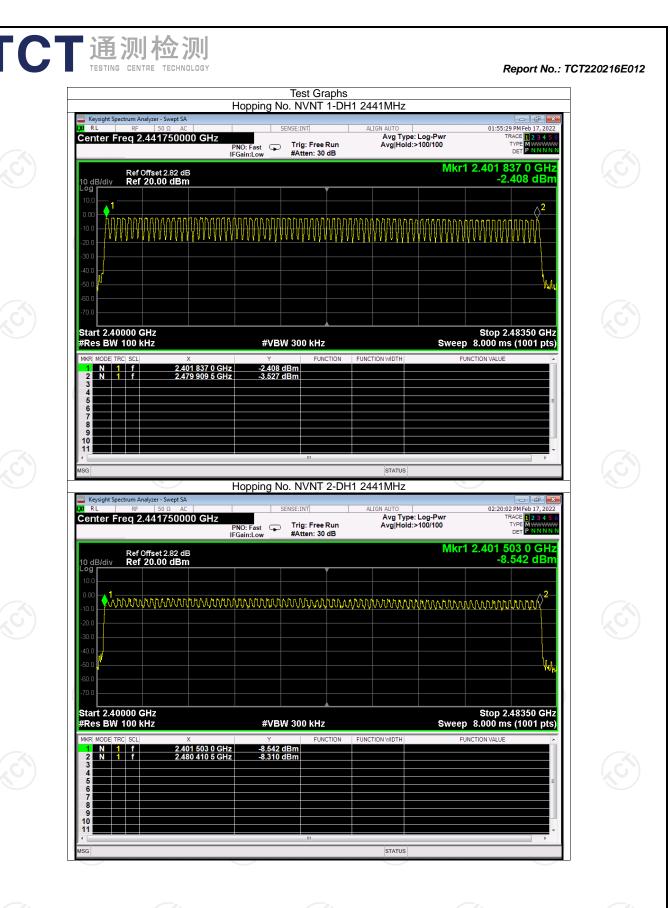
Page 65 of 96

	t Spectrum Analyzer - Swept SA	Tx. Spurious NVNT 2-DH1	2402MHz Ref	- 6 ×	
Cente	Freq 2.402000000 GH	SENSE:INT PNO: Wide →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	02:04:09 PM Feb 17, 2022 TRACE [] 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
10 dB/di	Ref Offset 2.69 dB v Ref 20.00 dBm	Ir Gam.Low	Mkr1 2.	401 857 70 GHz -2.424 dBm	
Log					
0.00		1			
-10.0			The second secon		
-20.0					
-30.0					
-40.0					
-60.0					
-70.0					
Center	2.4020000 GHz			Span 1.500 MHz	
#Res E	W 100 kHz	#VBW 300 kHz	STATUS	000 ms (30001 pts)	
Keysigi LXI R L	t Spectrum Analyzer - Swept SA RF 50 Ω AC	Tx. Spurious NVNT 2-DH1 24	ALIGN AUTO	02:04:39 PM Feb 17, 2022	
	Freq 13.265000000 G		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 123456 TYPE MWWWW DET PNNNN	
10 dB/d Log	Ref Offset 2.69 dB Ref 20.00 dBm		MI	r1 2.401 7 GHz -8.724 dBm	
10.0 — 0.00 —	1				
-10.0					
-30.0		A4 A5			
-50.0 -60.0 -70.0					
Start 0	.03 GHz SW 100 kHz	#VBW 300 kHz	Sweep	Stop 26.50 GHz 2.530 s (30001 pts)	
MKR MOE	E TRC SCL X 1 f 2.401 1 f 25.183	Y FUNCTION	-	ION VALUE	
3 N 4 N 5 N	1 f 4.800 1 f 7.010	8 GHz -52.822 dBm 1 GHz -55.828 dBm 5 GHz -55.882 dBm			
7 8 9					
		т			
MSG	/	No.	STATUS	No.	

Keysight :	Spectrum Analyzer - Swept SA RF 50 Ω AC	Tx. Spurious NVNT 2-DH1	ALIGN AUTO	02:06:31 PM Feb 17, 2022	
	Freq 2.441000000 GH		Avg Type: Log-Pwr Avg Hold: 2000/2000	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
10 dB/div	Ref Offset 2.82 dB Ref 20.00 dBm		Mkr1 2	.440 858 15 GHz -2.532 dBm	
Log					
10.0		<u>_1</u>			
-10.0					
-20.0					
-20.0					
-40.0					
-50.0					
-60.0					
-70.0					
	2.4410000 GHz V 100 kHz	#VBW 300 kHz		Span 1.500 MHz .000 ms (30001 pts)	
MSG	<u>k0)</u>	Tx. Spurious NVNT 2-DH1 24	I41MHz Emission		
LXI RL	Spectrum Analyzer - Swept SA RF 50 Q AC	SENSE:INT	ALIGN AUTO	02:07:01 PM Feb 17, 2022	
Center	Freq 13.265000000 G	PNO: Fast +++ Trig: Free Run	Avg Type: Log-Pwr		
		IFGain:Low #Atten: 30 dB	Avg Hold: 10/10	TRACE 123456 TYPE MWWWW DET PNNNNN	
10 dB/div	Ref Offset 2.82 dB Ref 20.00 dBm			TYPE NNNNN DET NNNNN kr1 2.440 5 GHz -2.541 dBm	
10.0	Ref Offset 2.82 dB Ref 20.00 dBm			kr1 2.440 5 GHz	
10.0	Ref Offset 2.82 dB Ref 20.00 dBm			kr1 2.440 5 GHz	
Log 10.0 -10.0 -20.0 -30.0	Ref Offset 2.82 dB Ref 20.00 dBm			kr1 2.440 5 GHz -2.541 dBm	
10.0		IFGain:Low #Atten: 30 dB		kr1 2.440 5 GHz	
Log 10.0 -10.0 -20.0 -30.0 -40.0	Ref Offset 2.82 dB Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	M	kr1 2.440 5 GHz -2.541 dBm	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0	03 GHz	IFGain:Low #Atten: 30 dB		kr1 2.440 5 GHz -2.541 dBm 2253 dm 2253 dm 2253 dm 2253 dm	
Log 10.0 -0.00 -10.0 -20.0 -30.0 -40.0 -40.0 -60.0 -60.0 -70.0 Start 0.0 #Res B\ MKR MODE	1 1 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	IFGain:Low #Atten: 30 dB	M 	kr1 2.440 5 GHz -2.541 dBm -2.53dbn -22.63dbn -22.63dbn	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -40.0 -50.0 -70.0 -50.0 -70.0 -50.0 -70.0 -50.0 -50.0 -70.0 -50.0 -70.0 -70.0 -50.0 -70.0	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB	M 	kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB	M 	kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -0.00 -10.0 -20.0 -30.0 -40.0	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB	M 	kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -0.00 -10.0 -20.0 -30.0 -40.0 -50.0	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB	M 	kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB #Atten: 30 dB #4tten: 30 dB #UBW 300 kHz #VBW 300 kHz GHz -45.410 dBm 3 GHz -45.410 dBm 3 GHz -55.703 dBm 8 GHz -50.424 dBm 9 GHz -50.424 dBm		kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB #Atten: 30 dB #4tten: 30 dB #UBW 300 kHz #VBW 300 kHz GHz -45.410 dBm 3 GHz -45.410 dBm 3 GHz -55.703 dBm 8 GHz -50.424 dBm 9 GHz -50.424 dBm		kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB #Atten: 30 dB #4tten: 30 dB #UBW 300 kHz #VBW 300 kHz GHz -45.410 dBm 3 GHz -45.410 dBm 3 GHz -55.703 dBm 8 GHz -50.424 dBm 9 GHz -50.424 dBm		kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	
Log 10.0 -10.0 -20.0 -20.0 -30.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70.0 Start 0.1 #Res B) MKR MODE 10.0 -70	1 03 GHz W 100 KHz TRC ScL × 1 f 24.400 1 f 24.825 1 f 4.879 1 f 7.424	IFGain:Low #Atten: 30 dB #Atten: 30 dB #4tten: 30 dB #UBW 300 kHz #VBW 300 kHz GHz -45.410 dBm 3 GHz -45.410 dBm 3 GHz -55.703 dBm 8 GHz -50.424 dBm 9 GHz -50.424 dBm		kr1 2.440 5 GHz -2.541 dBm 22.53 dBm ↓2 2.53 dBm ↓2 2.53 dBm ↓2 2.530 GHz 2.530 S (30001 pts)	

Keysigh	t Spectrum Analyzer - Swept SA RF 50 Ω AC	Tx. Spurious NVNT 2-DH1	2480MHz Ref	02:08:58 PM Feb 17, 2022	
	Freq 2.480000000 G	HZ PNO: Wide +++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 1000/1000	02:08:38 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	
10 dB/di	Ref Offset 2.91 dB v Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2	479 857 25 GHz -3.547 dBm	
10.0					
0.00					
-10.0	and the second s				
-20.0					
-30.0					
-50.0					
-60.0					
-70.0					
#Res B	2.4800000 GHz W 100 kHz	#VBW 300 kHz		Span 1.500 MHz .000 ms (30001 pts)	
MSG	KO J	Tx. Spurious NVNT 2-DH1 24	80MHz Emission	, ,	
LXI RL	t Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE:INT	ALIGN AUTO	02:09:28 PM Feb 17, 2022	
Center	r Freq 13.265000000	PNO: Fast ++++ Irig: Free Run	Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6	
		IFGain:Low #Atten: 30 dB	Avginoid. 10/10	TRACE 123456 TYPE MWWWWW DET PNNNNN	
10 dB/d	Ref Offset 2.91 dB iv Ref 20.00 dBm	IFGain:Low#Atten: 30 dB		kr1 2.480 2 GHz -5.152 dBm	
10.0	Ref Offset 2.91 dB Ref 20.00 dBm	IFGain:Low #Atten: 30 dB		kr1 2.480 2 GHz	
Log 10.0 0.00 -10.0		IFGain:Low #Atten: 30 dB		kr1 2.480 2 GHz	
10.0 0.00 -10.0 -20.0 -30.0		IFGain:Low #Atten: 30 dB		kr1 2.480 2 GHz -5.152 dBm	
Log 10.0 -10.0			M	kr1 2.480 2 GHz	
-40.0			M	kr1 2.480 2 GHz -5.152 dBm	
Log 100 -100 -200 -300 -400 -600 -600 -700 Start 0	1 3 3 .03 GHz			kr1 2.480 2 GHz -5.152 dBm -2355 t0m	
Log 100 000 -100 -200 -200 -300 -40	1 3 3 3 3 3 3 3 3 3 3 3 3 3	#VBW 300 KHz	M 	kr1 2.480 2 GHz -5.152 dBm -23.65 dBm -23.65 dBm -23.65 dBm	
Log 100 000 -100 -200 -300 -400 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -500 -400 -50	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t		M 	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 -100 -200 -300 -400 -500 -500 -500 -500 -500 -500 -5	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t		M 	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 -100 -200 -200 -200 -200 -200 -200	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t		M 	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 -100 -200 -200 -400 -400 -400 -400 -400 -4	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t		M 	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 000 -100 -200 -200 -300 -400 -500 -600 -500 -600 -50	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t	#VBW 300 KHz #VBW 300 KHz 2 GHz -5.152 dBm 3 2 GHz -51.71 dBm 3 4 GHz -52.913 dBm 9 GHz -52.913 dBm	FUNCTION WIDTH FUNCTION	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 000 -100 -200 -200 -300 -400 -500 -600 -500 -600 -50	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t	#VBW 300 KHz #VBW 300 KHz 2 GHz -5.152 dBm 3 2 GHz -51.71 dBm 3 4 GHz -52.913 dBm 9 GHz -52.913 dBm	FUNCTION WIDTH FUNCTION	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 000 -100 -200 -200 -300 -400 -500 -600 -500 -600 -50	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t	#VBW 300 KHz #VBW 300 KHz 2 GHz -5.152 dBm 3 2 GHz -51.71 dBm 3 4 GHz -52.913 dBm 9 GHz -52.913 dBm	FUNCTION WIDTH FUNCTION	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	
Log 100 000 -100 -200 -200 -300 -400 -500 -600 -500 -600 -50	1 .03 GHz 3W 100 KHz E TRC SCL X 1 f 24.64t 1 f 24.64t 1 f 7.27t	#VBW 300 KHz #VBW 300 KHz 2 GHz -5.152 dBm 3 2 GHz -51.71 dBm 3 4 GHz -52.913 dBm 9 GHz -52.913 dBm	FUNCTION WIDTH FUNCTION	kr1 2.480 2 GHz -5.152 dBm -23.85 cdm -23.85 cdm -23.8	

		Tx. Spurious NVNT 3-DH1	2402MHz Ref	Report No.: TC	T220216E012
LXI RL	RF 50 Ω AC r Freq 2.402000000 GH	Z PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	02:40:14 PM Feb 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
10 dB/d	Ref Offset 2.69 dB v Ref 20.00 dBm	IFGam:Low	Mkr1 2.	401 858 85 GHz -2.459 dBm	
Log					
0.00		1			
-10.0					
-20.0					
-30.0					
-40.0					
-60.0					
-70.0					
Center #Res	2.4020000 GHz SW 100 kHz	#VBW 300 kHz	Swaan 2	Span 1.500 MHz .000 ms (30001 pts)	
#Res E			STATUS	000 ms (30001 pts)	
LXI RL	nt Spectrum Analyzer - Swept SA RF 50 Ω AC	x. Spurious NVNT 3-DH1 24	02MHz Emission	02:40:44 PM Feb 17, 2022	
	r Freq 13.265000000 Gl		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	
10 dB/d Log	Ref Offset 2.69 dB iv Ref 20.00 dBm		MI	kr1 2.401 7 GHz -3.177 dBm	
10.0 0.00					
-10.0				-22:46 dBm	
-30.0	3			<u></u> ∂2	
-50.0 -60.0 -70.0					
Start 0	0.03 GHz 3W 100 kHz	#\/B\\/ 200 kHz	Sween	Stop 26.50 GHz 2.530 s (30001 pts)	
	E TRC SCL X 1 f 2.4017	YBW 300 kHz Y FUNCTION 'GHz -3.177 dBm			
2 N 3 N 4 N 5 N	1 f 24.831 5 1 f 4.800 8 1 f 7.114 3 1 f 9.602 4	GHz -53.093 dBm GHz -54.783 dBm			
6 7 8 9					
9 10 11					
MSG	/		STATUS		


	ht Spectrum Analyzer - Swept SA	Tx. Spurious NVNT 3-DH1 2		
	r Freq 2.441000000 GH	PNO: Wide ++++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	02:42:27 PM Feb 17, 2022 TRACE 12:3:45 6 TYPE MWANAWAY DET P NNNNN
10 dB(c	Ref Offset 2.82 dB liv Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2.4	40 855 35 GHz -2.543 dBm
10 dB/d				
10.0		1		
-10.0				
-20.0				The second se
-30.0				
-40.0				
-50.0				
-60.0				
-70.0				
Cente #Res	r 2.4410000 GHz 3W 100 kHz	#VBW 300 kHz	Sweep 2.	Span 1.500 MHz 000 ms (30001 pts)
MSG		Γx. Spurious NVNT 3-DH1 244	STATUS	
lxi RL	ht Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE:INT	ALIGN AUTO	02:42:57 PM Feb 17, 2022
Cente	r Freq 13.265000000 G	PNO: Fast +++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
		IFGain:Low #Atten: 30 dB		
10 dB/o	Ref Offset 2.82 dB div Ref 20.00 dBm	IFGain:Low #Atten: 30 db		r1 2.440 5 GHz -6.347 dBm
10 dB/c Log 10.0	Ref Offset 2.82 dB div Ref 20.00 dBm	IFGain:Low #Atten. do do		r1 2.440 5 GHz
10.0		IFGain:Low #Atten: do do		r1 2.440 5 GHz
10.0				r1 2.440 5 GHz
Log - 10.0 - -10.0 - -20.0 - -30.0 -	↓ ↓ ↓			r1 2.440 5 GHz -6.347 dBm
Log 10.0 -10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -70.0				r1 2.440 5 GHz -6.347 dBm
Log 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0 Start #Res	0.03 GHz BW 100 KHz	4 _ 5	Mk	r1 2.440 5 GHz -6.347 dBm -22.54 dBm
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -60.0 -60.0 -70.0 Start #Res Start - N Res	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.826 1 f 4.882		Mk	r1 2.440 5 GHz -6.347 dBm -2254 @m 22 5top 26.50 GHz
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.826 1 f 4.882		Mk	r1 2.440 5 GHz -6.347 dBm -22.54 dBm
Log 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.400 1 f 24.826 1 f 7.182		Mk	r1 2.440 5 GHz -6.347 dBm -22.54 dBm
Log 10.0 -10.0 -20.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.400 1 f 24.826 1 f 7.182		Mk	r1 2.440 5 GHz -6.347 dBm -22.54 dBm
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.400 1 f 24.826 1 f 7.182	4 5 #VBW 300 kHz \$ GHz -6.347 dBm 2 GHz -53.190 dBm 2 GHz -55.996 dBm 7 GHz -65.421 dBm	FUNCTION WIDTH	r1 2.440 5 GHz -6.347 dBm -22.54 dbm 22 Stop 26.50 GHz 2.530 s (30001 pts)
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.400 1 f 24.826 1 f 7.182	4 5 #VBW 300 kHz \$ GHz -6.347 dBm 2 GHz -53.190 dBm 2 GHz -55.996 dBm 7 GHz -65.421 dBm	FUNCTION WIDTH	r1 2.440 5 GHz -6.347 dBm -22.54 dbm 22 Stop 26.50 GHz 2.530 s (30001 pts)
Log 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50	0.03 GHz BW 100 KHz DE TRC SCL X 1 f 24.400 1 f 24.826 1 f 7.182	4 5 #VBW 300 kHz \$ GHz -6.347 dBm 2 GHz -53.190 dBm 2 GHz -55.996 dBm 7 GHz -65.421 dBm	FUNCTION WIDTH	r1 2.440 5 GHz -6.347 dBm -22.54 dbm 22 Stop 26.50 GHz 2.530 s (30001 pts)

	ht Spectrum Analyzer - Swept	SA	Spurious NVNT						
Cente	r Freq 2.480000	000 GHz PNO	SENSE:INT Wide Trig: Fi in:Low #Atten:	ree Run	LIGN AUTO Avg Type: L Avg Hold: 10	_og-Pwr 000/1000	02:45:09 PM F TRACE TYPE DET	eb 17, 2022 1 2 3 4 5 6 M M M N N N N N N N N N N N N N	
10 dB/d Log	Ref Offset 2.91	dB	m.Low with them			Mkr1 2	2.479 857 1		
Log —									
0.00			1						
-10.0		1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		مريد (
-20.0	M M								
-30.0								-	
-40.0									
-50.0									
-60.0									
	2.4800000 GHz 3W 100 kHz		#VBW 300 k	Hz	STATUS	Sweep	Span 1.5 2.000 ms (30)	00 MHZ 001 pts)	
	K0		rious NVNT 3-I	DH1 2480M		on			
LXI RL	ht Spectrum Analyzer - Swept	ac 0000 GHz	SENSE:INT	A		_og-Pwr	02:45:38 PM F	eb 17, 2022	
				ree Puin			TYPE	1 2 3 4 5 6 Maaaaaaaa	
	Ref Offset 2 91	IFGa	:Fast ↔ Trig:Fi in:Low #Atten:	ree Run 30 dB	Avg Hold: 1	0/10	1kr1 2.480	123456 MWWWW PNNNN 2GHz	
10 dB/d Log 10.0	Ref Offset 2.91 liv Ref 20.00 dB	IFGa				0/10	1kr1 2.480		
	Ref Offset 2.91 Iv Ref 20.00 d⊟	IFGa				0/10	1kr1 2.480	2 GHz	
10.0 0.00	Ref Offset 2.91 Ref 20.00 dB	IFGa				0/10	1kr1 2.480 -8.033	2 GHz 3 dBm	
10.0		dB m		30 dB		0/10	1kr1 2.480 -8.033	2 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -40.0	1	dB m	in:Low #Atten:		Avg Hold: 1	0/10	1kr1 2.480 -8.033	2 GHz 3 dBm	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start (dB m	in:Low #Atten:	30 dB	Avg Hold: 1	0/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 0 #Res 1 MKR MOI	0.03 GHz 3W 100 kHz 2E TRC SCL 1 f	dB m 3 ↓ 4 2.480 2 GHz	**************************************	30 dB	Avg Hold: 1	o/10	1kr1 2.480 -8,033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 0 #Res I MKR MOI 1 N 2 N 3 N 4 N 5 N	0.03 GHz 3W 100 kHz DET TRC SCL 1 f 1 f 1 f 1 f	A A A A A A A A A A A A A A A A A A A	#Atten:	30 dB	Avg Hold: 11	o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -60.0 #Res 1 -70.0 Start 0 #Res 1 MKR MO.1 1 NKR MO.1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*VBW 300 k *VBW 300 k *VBW 300 k *0.033 dBm -4.4.548 dBm -55.295 dBm	30 dB	Avg Hold: 11	o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -60.0 -70.0 Start 0 -70.0 -70.0 Start 0 -70.0	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*VBW 300 k *VBW 300 k *VBW 300 k *0.033 dBm -4.4.548 dBm -55.295 dBm	30 dB	Avg Hold: 11	o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 #Res I Start 0 #Res I MKR MOL 1 N 3 N 4 N 5 N 6 7 8 9 9 10	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*/Low #Atten:	30 dB	Avg Hold: 11	o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -30.0 -40.0 -50.	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*/Low #Atten:	30 dB		o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -30.0 -40.0 -50.	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*/Low #Atten:	30 dB		o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	
10.0 0.00 -10.0 -20.0 -30.0 -30.0 -40.0 -50.	0.03 GHz 3W 100 KHz ETC SCL 1 f 1 f	× 2.480 2 GHz 24.816 6 GHz 4.960 5 GHz 7.273 1 GHz	*/Low #Atten:	30 dB		o/10	1kr1 2.480 -8.033	2 GHz 3 dBm -23 57 dbm -23 57 dbm -23 57 dbm -250 GHz	

is is	Verd Pas Pas Pas	el Limit 15 15 15	umber	Hopping N 79 79 79 79	Mode 1-DH1 2-DH1 3-DH1	Condition NVNT NVNT NVNT	

Report No.: TCT220216E012

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 75 of 96

	um Analyzer - Swept SA	Hopping N	No. NVNT 3-DH1		03:55		
Center Fre	RF 50Ω AC 9 q 2.441750000 G	PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log- Avg Hold:>100/	Pwr 100	12 3 4 5 6 TYPE MWWWW DET P N N N N	
10 dB/div Log	Ref Offset 2.82 dB Ref 20.00 dBm				Mkr1 2.401 2 -2	837 0 GHz 2.754 dBm	
0.00 -10.0 -20.0	VMVMMMMM	wwwwwww	WWWWWWWWWW	www.www.ww		www.y²	
-30.0 -40.0 -50.0							
-60.0							
Start 2.4000 #Res BW 10	SCL X	Y	SW 300 kHz	FUNCTION WIDTH	Sweep 8.000 m		
1 N 1 2 N 1 3 4 5	f 2.401 83 f 2.480 57	7 0 GHz -2.754 7 5 GHz -10.368	l dBm 3 dBm			=	
6 7 8 9 10							
MSG				STATUS		F F	

	Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict		
NVNT	1-DH1	2441	0.38	121.22	319	31600	400	Pass		
NVNT	1-DH3	2441	1.63	262.43	161	31600	400	Pass		
NVNT	1-DH5	2441	2.88	285.12	99	31600	400	Pass		
NVNT	2-DH1	2441	0.39	124.41	319	31600	400	Pass		
NVNT	2-DH3	2441	1.64	259.12	158	31600	400	Pass		
NVNT	2-DH5	2441	2.88	319.68	111	31600	400	Pass		
NVNT	3-DH1	2441	0.39	123.63	317	31600	400	Pass		
NVNT	3-DH3	2441	1.64	277.16	169	31600	400	Pass		
NVNT	3-DH5	2441	2.89	320.79	111	31600	400	Pass		

Page 77 of 96

Report No.: TCT220216E012

	sight Spectrum Analyzer - Swept SA	ell NVNT 1-DH3 2441MHz One E		T
Cen	ter Freq 2.441000000 GHz	SENSEINT ALIGN AUT Trig Delay-500.0 µs Avg O: Fast → Trig: Video ain:Low #Atten: 30 dB	03:03:04 PM Feb 17, 2022 g Type: Log-Pwr TRACE TYPE: TYPE DET PNNNNN	
Log	Ref Offset 2.82 dB 3/div Ref 20.00 dBm		ΔMkr1 1.630 ms 4.71 dB	
10.0 0.00 -10.0	1Δ2 		TRIC LVL	
-20.0 -30.0 -40.0				
-50.0 -60.0		n de la constante de la constan La constante de la constante de La constante de la constante de	n star for helden. An en de Linder og de star for en d An en de Linder og de star for en de	
	ter 2.441000000 GHz BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts)	(\mathbf{c})
MKR I	MODEL TRC SCL X Δ2 1 t (Δ) 1.630 ms (F 1 t 498.0 μs	Y FUNCTION FUNCTION WIE		
3 4 5 6 7				
8 9 10 11				
MSG		INVNT 1-DH3 2441MHz Accum	TTUS	(J)
LXI RI	sight Spectrum Analyzer - Swept SA RF 50 Ω AC ter Freq 2.441000000 GHz	SENSE:INT ALIGN AUT		
10.45	Ref Offset 2.82 dB	IO: Fast ↔ Trig: Free Run ain:Low #Atten: 30 dB	DET P NNNNN	
10 de Log _v 10.0				
0.00				
-10.0				
-30.0				
-40.0	n an			
-50.0				
-70.0				
Res	er 2.441000000 GHz BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 31.60 s (10001 pts)	
MSG				

	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	Dwell NVNT 1-DH5 2441MHz One	- ¢	
	RL RF 50 Ω AC enter Freq 2.441000000 GHz		1 AUTO 03:04:04 PM Feb 17, 20 Avg Type: Log-Pwr TRACE 12.34 TYPE DET P NNN	122 5.6 WWW
10	Ref Offset 2.82 dB dB/div Ref 20.00 dBm		ΔMkr1 2.880 m 5.49 d	
	.0	1Δ2		
-10 -20			THICL	
-30 -40 -50	.0		anastrata in tanà antang ang ang ang ang ang ang ang ang ang	
-60	.o <mark>Manin'</mark>		n star tir star for star for star an	
	enter 2.441000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Span 0 I Sweep 10.00 ms (10001 pi	Hz ts)
	R MODE TRC SCL X Δ2 1 t (Δ) 2.88' F 1 t 498	Υ FUNCTION FUNCTION 0 ms (Δ) 5.49 dB .0 μs -9.12 dBm	N WIDTH FUNCTION VALUE	Ì
				Ξ
1				
		m m	STATUS	
	Keysight Spectrum Analyzer - Swept SA	Dwell NVNT 1-DH5 2441MHz Accu	- ¢	
	RL RF 50 Ω AC enter Freq 2.441000000 GHz		I AUTO 03:04:37 PM Feb 17, 20 Avg Type: Log-Pwr TRACE 1234 TYPE V DET P.NNN)22 5 6 MW
10 Lo	Ref Offset 2.82 dB dB/div Ref 20.00 dBm			
10				
0.				
-10				
-20				
-40				
-50	0. <mark>11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</mark>	Lines, any colline by the set of the field of and a black sampling black which is a set or an	<mark>n i ya sheka na na sheka na sh</mark>	
-60				
-70				
Re Msc	nter 2.441000000 GHz s BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Sweep 31.60 s (10001 p	ts)
	9	N N		7

in Ke	D ysight Spectrum Analyzer - Swept SA	well NVNT 2-DH1 2441MHz One	Burst	
<mark>(X)</mark> R Cen	ter Freq 2.441000000 GHz	SENSE:INT ALIGN AL Trig Delay-500.0 µs Av PNO: Fast →→ Trig: Video IFGain:Low #Atten: 30 dB	02:36:36 PM Feb 17 /g Type: Log-Pwr TRACE 12 TYPE Wm DET P N	, 2022 8 4 5 6 WWWW N N N N
10.0 10.0 -10.0 -20.0 -30.0	Ref Offset 2.82 dB Ref 20.00 dBm		ΔMkr1 390.0 -41.69	
-40.0 -50.0 -70.0 Cen Res	ter 2.44 1000000 GHz BW 1.0 MHz	1Δ2 #VBW 3.0 MHz	Span Sweep 3.000 ms (10001	0 Hz pts)
	F 1 t 390.0 μt F 1 t 499.5 μt	s (Δ) -41.69 dB		
MSG	Dw	si vell NVNT 2-DH1 2441MHz Accum	nulated	
Cen 10 df 10 0 10 0 -10 0	Ref Offset 2.82 dB Ref 20.00 dBm	Av PNO: Fast → Trig: Free Run IFGein:Low #Atten: 30 dB	ITO 02:37:09 PM Feb 12 rg Type: Log-Pwr TRACE 2 TYPE WAA DET PN DET PN	
-20 0 -30 0 -40 0 -50 0 -60 0 -70 0				
Cen Res MSG	ter 2.441000000 GHz BW 1.0 MHz	#VBW 3.0 MHz	Span Sweep 31.60 s (10001	0 Hz pts)

	Keysight Spectrum Analyzer - Swept SA K K R L R F 50 Ω AC	Dwell NVNT 2-DH3 2441MHz One B	03:05:13 PM Feb 17, 2022	
7.	Center Freq 2.441000000 GHz	Trig Delay-500.0 µs Avg PNO: Fast →→ Trig: Video IFGain:Low #Atten: 30 dB	Type: Log-Pwr TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N NN N N ΔMkr1 1.640 ms	
\mathbf{S}	Ref Offset 2.82 dB 10 dB/div Ref 20.00 dBm		-47.47 dB	(jú
	0.00 -10.0		TRIGLYL	
	-20.0			
	-40.0 -50.0	ուցից ենց ու իր ¹⁹⁴ երբունուն այն ու ցենտան հայություն ներ բարթերներություն հնվոր կատություն ու թե Աստություն է ու ու են հետ հայություններությունները հայությունները հայություններին հայություններին արդյուններին ա	an and but with an interpretation of a state of the state	
~	-60.0 <mark>pri julija</mark>	n na sa ana ang sa sanang na	adalara yanaring sana sa ara ila talan yana yana yana yana yana yana yana	
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts)	(SC
	2 F 1 t 498.0	Υ Function Function with ms (Δ) -47.47 dB -47.47 dB μs -6.68 dBm -6.68 dBm -6.68 dBm	TH FUNCTION VALUE	
	3 4 5 6		=	
	7 8 9 9			
~	MSG	III STA	*	
5) H		Dwell NVNT 2-DH3 2441MHz Accumu		
	M RL RF 50 Ω AC Center Freq 2.441000000 GHz	PNO: Fast +++ Irig: Free Run		
	Ref Offset 2.82 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	5-1 <u>-</u>	
	10.0			
~	0.00			
5)	-10.0			
	-20.0			
(
	-40.0		an a band an air a bann an thairth an tha bhairth an thairth a bhairth an thairth an thairth an thairth an thai	
~	-60.0			
5)	-70.0			No.
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 31.60 s (10001 pts)	
	MSG	STA		

Page 82 of 96