

TEST REPORT

Test report no.: 1-6998_23-02-08_TR1-R1

Testing laboratory	Applicant
cetecom advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://cetecomadvanced.com e-mail: mail@cetecomadvanced.com Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkks). The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12047-01-00. ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002 FCC designation number: DE0002	Leica Geosystems AG Heinrich-Wild-Straße 9435 Heerbrugg / SWITZERLAND Phone: +41 71 727 3131 Contact: Oezcan Tepeli e-mail: oezcan.tepeli@leica-geosystems.com Manufacturer Leica Geosystems AG Heinrich-Wild-Straße 9435 Heerbrugg / SWITZERLAND
	andard/s e of Federal Regulations; Chapter I; Part 22 - Public

FCC - Title 47 CFR Part 24 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services

For further applied test standards please refer to section 3 of this test report.

Test Item					
Kind of test item:	GNSS Sensor				
Model name:	LG1002				
FCC ID:	RFD-LG1002				
ISED certification number:	3177A-LG1002				
Frequency bands:	LTE bands 2, 4, 5, 12, 13, 25, 26a, 26b, 66, 85				
Technology tested:	LTE Cat. M1				
Antenna:	One Quarter-Wave Monopole antenna				
Power supply:	2.5 V to 4.1 V DC by Li-lon battery				
Temperature range:	-30°C to +60°C				

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino	
Supervisor Radio Services	5
Radio Labs	

Test performed:

René Oelmann Lab Manager Radio Labs

1 Table of contents

1 2		of contents Il information	
2			
		Notes and disclaimer	
		Application details Test laboratories sub-contracted	
3		andard/s, references and accreditations	
4	Report	ing statements of conformity – decision rule	7
5	Test er	nvironment	8
6	Test ite	em	8
	6.1	General description	
		Additional information	
7	Descri	ption of the test setup	9
	-	Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
		Radiated measurements > 18 GHz	
	7.4	Conducted measurements normal and extreme conditions	15
8	Seauer	nce of testing	
	-	Sequence of testing radiated spurious 9 kHz to 30 MHz	
		Sequence of testing radiated spurious 9 kHz to 50 MHz	
		Sequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious above 18 GHz	
9		rement uncertainty	
		tional information and comments	
10			
11		mary of measurement results	
	11.1	Part 22/RSS-132: LTE band 5	
	11.2	Part 22/RSS-132: LTE band 26a	
12	RF m	neasurements	
	12.1	Description of test setup	24
	12.2	Description of test setup Results LTE band 5	24 24
	12.2 12.2.1	Description of test setup Results LTE band 5 RF output power	
	12.2 12.2.1 12.2.2	Description of test setup Results LTE band 5 RF output power Frequency stability	
	12.2 12.2.1 12.2.2 12.2.3	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated	
	12.2 12.2.1 12.2.2 12.2.3 12.2.4	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted	
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance	24 24 24 27 29 36 43
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth	24 24 24 27 29 36 43 47
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a	24 24 27 29 36 43 43 47 51
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power	24 24 27 29 36 43 47 51
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a	24 24 24 27 29 36 43 43 47 51 51 54
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1 12.3.2	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability	24 24 24 27 29 36 43 43 47 51 51 54 56
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Block edge compliance	24 24 27 29 36 43 43 47 51 51 54 56 63 70
	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1 12.3.2 12.3.3 12.3.4	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions radiated Spurious emissions radiated Spurious emissions conducted	24 24 27 29 36 43 43 47 51 51 54 56 63 70
13	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5 12.3.6	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Block edge compliance	24 24 24 27 29 36 43 43 47 51 51 51 54 56 63 70 74
13	12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.2.5 12.2.6 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5 12.3.6	Description of test setup Results LTE band 5 RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth RF output power Frequency stability Spurious emissions conducted Block edge compliance Occupied bandwidth Results LTE band 26a RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth	24 24 24 27 29 36 43 43 47 51 51 54 56 63 70 74 74 78

	13.2	Part 24/RSS-133: LTE band 25	. 79
14	RF me	easurements	. 80
	14.1	Description of test setup	
	14.2	Results LTE band 2	
	14.2.1	RF output power	
	14.2.2	Frequency stability	
	14.2.3 14.2.4	Spurious emissions radiated	
	14.2.4 14.2.5		
	14.2.5 14.2.6	Block edge compliance Occupied bandwidth	
	14.2.0 14.3	Results LTE band 25	
	14.3.1	RF output power	
	14.3.2	Frequency stability	
	14.3.3	Spurious emissions radiated	
	14.3.4	Spurious emissions conducted	
	14.3.5	Block edge compliance	
	14.3.6	Occupied bandwidth	
15	Summ	nary of measurement results	138
	15.1	Part 27/RSS-139: LTE band 4	
	15.2	Part 27/RSS-130: LTE band 12	
	15.3	Part 27/RSS-130: LTE band 13	
	15.4	Part 27: LTE band 26b	140
	15.5	Part 27/RSS-139: LTE band 66	
	15.6	Part 27/RSS-133: LTE band 85	
16	RF me	easurements	142
	16.1	Description of test setup	142
	16.2	Results LTE band 4	
	16.2.1	RF output power	142
	16.2.2	Frequency stability	147
	16.2.3	Spurious emissions radiated	
	16.2.4	Spurious emissions conducted	
	16.2.5	Block edge compliance	
	16.2.6	Occupied bandwidth	
	16.3	Results LTE band 12	
	16.3.1	RF output power	
	16.3.2	Frequency stability	
	16.3.3	Spurious emissions radiated	
	16.3.4 16.3.5	Spurious emissions conducted	
	16.3.5	Block edge compliance Occupied bandwidth	
	16.3.0 16.4	Results LTE band 13	
	16.4.1	RF output power	
	16.4.2	Frequency stability	
	16.4.3	Spurious emissions radiated	
	16.4.4	Spurious emissions conducted	
	16.4.5	Block edge compliance	
	16.4.6	Occupied bandwidth	
	16.5	Results LTE band 26b	
	16.5.1	RF output power	
	16.5.2	Frequency stability	
	16.5.3	Spurious emissions radiated	
	16.5.4	Spurious emissions conducted	
	16.5.5	Block edge compliance	
	16.5.6	Occupied bandwidth	240

	16.6	Results LTE band 66	
	16.6.1	RF output power	
	16.6.2	Frequency stability	
	16.6.3	Spurious emissions radiated	
	16.6.4	Spurious emissions conducted	
	16.6.5	Block edge compliance	
	16.6.6	Occupied bandwidth	
	16.7	Results LTE band 85	
	16.7.1	RF output power	
	16.7.2	Frequency stability	
	16.7.3	Spurious emissions radiated	
	16.7.4	Spurious emissions conducted	
	16.7.5	Block edge compliance	
	16.7.6	Occupied bandwidth	298
17	Obse	rvations	
18	Gloss	ary	
19	Docu	ment history	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2023-12-20
Date of receipt of test item:	2024-01-02
Start of test:*	2024-01-02
End of test:*	2024-03-12
Person(s) present during the test:	-/-

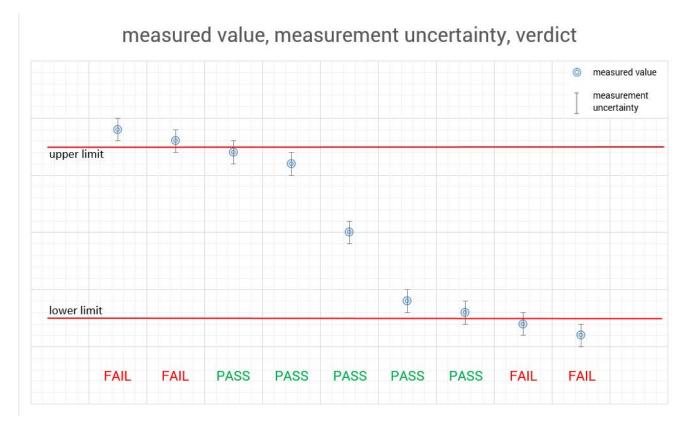
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 22		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
FCC - Title 47 CFR Part 27		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 27 - Miscellaneous wireless communications services
RSS - 132 Issue 4	January 2023	Cellular Systems Operating in the Bands 824-849 MHz and 869- 894 MHz
RSS - 133 Issue 6, Amendment 1	January 2018	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services
RSS - 139 Issue 4	Septembe r 2022	Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz
RSS – 130 Issue 2	February 2019	Equipment Operating in the Frequency Bands 617-652 MHz, 663- 698 MHz, 698-756 MHz and 777-787 MHz
FCC – Title 47 CFR Part 90		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 90 - Private Land Mobile Radio Services


ersion	Description
	American National Standard for Methods of Measurement of
	Radio-Noise Emissions from Low-Voltage Electrical and Electronic
	Equipment in the Range of 9 kHz to 40 GHz American National Standard for Compliance Testing of
	Transmitters Used in Licensed Radio Services
)3r01	Measurement Guidance for Certification of Licensed Digital Transmitters
-	

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max}	+22 °C during room temperature tests +60 °C during high temperature tests		
Relative humidity content	:	T _{min}	-30 °C during low temperature tests 55 %		
Barometric pressure	:		1021 hpa		
Power supply	:	V _{nom} V _{max} V _{min}	 3.7 V DC by Li-Ion battery 4.1 V by external power supply 2.5 V by external power supply 		

6 Test item

6.1 General description

Kind of test item :	GNSS Sensor		
Model name :	LG1002		
HMN :	N/A		
PMN :	GS05 LTE		
HVIN :	LG1002		
FVIN :	N/A		
S/N serial number :	Rad. 3800165 & 3800166TBD Cond. 3800167		
Hardware status :	C		
Software status :	0.1		
Firmware status :	BSP v4.0.20		
Frequency band :	LTE bands 2, 4, 5, 12, 13, 25, 26a, 26b, 66, 85		
Type of radio transmission : Use of frequency spectrum :	OFDM		
Type of modulation :	: QPSK, 16 – QAM		
Antenna :	One Quarter-Wave Monopole antenna		
Power supply :	2.5 V to 4.1 V DC by Li-lon battery		
Temperature range :	-30°C to +60°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

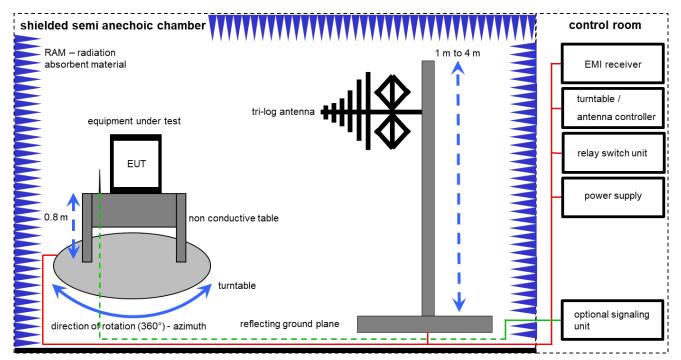
1-6998_23-02-01_TR1-A101-R1 1-6998_23-02-01_TR1-A102-R1 1-6998_23-02-01_TR1-A104-R1

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.


Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

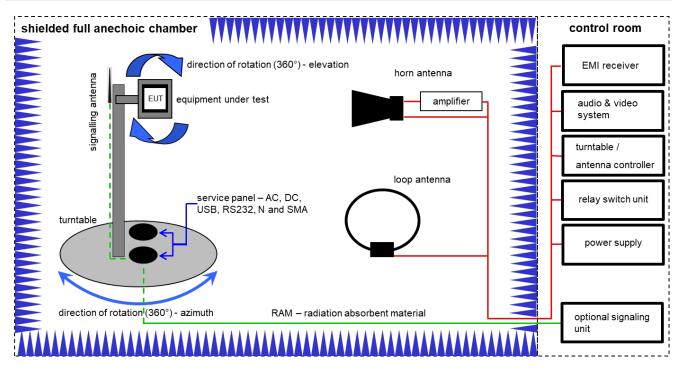
Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


cetecom

advanced

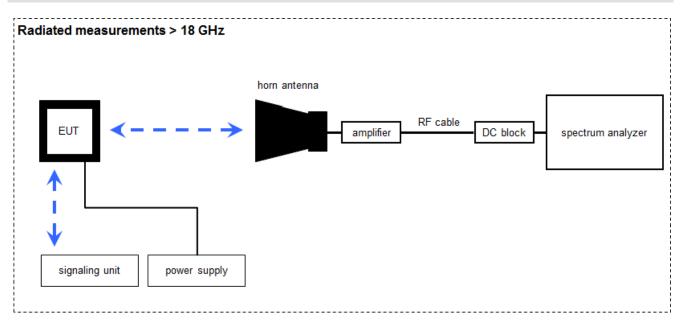
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	31.01.2024	30.01.2026
6	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
7	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2023	31.12.2024
9	А	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	170616	300006251	k	06.12.2023	31.12.2025

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)


<u>Example calculation:</u> OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μW) cetecom advanced

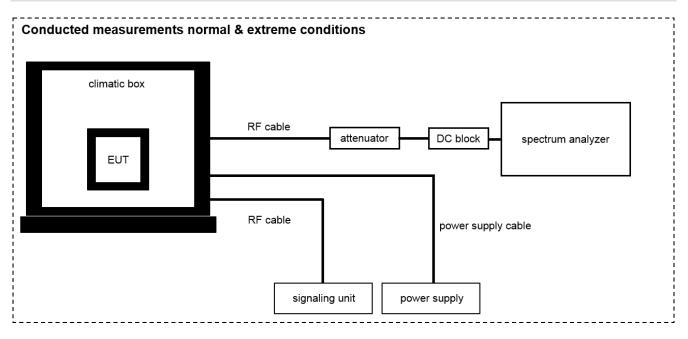
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
8	A, B	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	170616	300006251	k	06.12.2023	31.12.2025
9	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	02.08.2023	31.08.2025
10	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vIKI!	20.03.2023	19.03.2025
11	В	Tunable Band Reject Filter (FDD I)	WRCT1850/2170- 5/40-10EEK	Wainwright	7	300003386	ne	-/-	-/-
13	В	Tunable Band Reject Filter	WRCT1850/2170- 5/40-10EEK	Wainwright	40	300003872	ev	-/-	-/-
14	В	Tunable Band Reject Filter	WRCT824/894-5/40- 8EEK	Wainwright	27	300003873	ev	-/-	-/-
15	A, B	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.01.2024	14.01.2025
17	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
18	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
19	В	Band Reject Filter	WRCG1710/1755- 1690/1775-90/14SS	Wainwright	7	300003793	ne	-/-	-/-
20	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
21	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)


Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	170616	300006251	k	06.12.2023	31.12.2025
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKl!	24.01.2024	23.01.2026
3	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
4	А	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	06.12.2023	31.12.2024

7.4 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	06.12.2023	31.12.2024
2	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH		300004590	ne	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm /72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
4	A	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
5	A	RF-Cable	ST18/SMAm/SMAm /36	Huber & Suhner	Batch no. 601494	400001309	ev	-/-	-/-
6	А	Temperature Test Chamber	T-40/50	CTS GmbH	064023	300003540	ev	09.05.2022	31.05.2024
7	А	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	170616	300006251	k	06.12.2023	31.12.2025

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

E.

Measurement und	ertainty				
Test case	Unce	rtainty			
Antenna gain	± 3	dB			
99 % bandwidth	± R	BW			
-26 dB bandwidth	± R	BW			
Frequency stability	1	0 ⁻⁶			
Maximum output power conducted ± 1.56 dB					
Block edge compliance	± 1.5	± 1.56 dB			
	> 3.6 GHz	± 1.56 dB			
Spurious emissions conducted	> 7 GHz	± 1.56 dB			
Spundus emissions conducted	> 18 GHz	± 2.31 dB			
	≥ 40 GHz	± 2.97 dB			
Spurious emissions radiated below 30 MHz	± 3	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.	7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB			

10 Additional information and comments

Reference documents:	1-6998_23-02 Questionnaire.pdf Anleitung GS05 Radio Zertifizierung V1.pdf			
Special test descriptions:	None			
Configuration descriptions:	None			
EUT selection:	\boxtimes	Only one device available		
		Devices selected by the customer		
		Devices selected by the laboratory (Randomly)		

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC: CFR Part 2 & Part 22	See table!	2024-09-04	-/-
The resting	ISED: RSS-Gen, Issue 5 & RSS 132, Issue 4	oce tuble.	2021 07 01	/

11.1 Part 22/RSS-132: LTE band 5

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	X				-/-
Frequency Stability	Extreme	Extreme	X				-/-
Spurious Emissions Radiated	Nominal	Nominal	X				-/-
Spurious Emissions Conducted	Nominal	Nominal	X				-/-
Block Edge Compliance	Nominal	Nominal	X				-/-
Occupied Bandwidth	Nominal	Nominal	X				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

cetecom advanced

11.2 Part 22/RSS-132: LTE band 26a

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme	\boxtimes				-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

12 RF measurements

12.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

12.2 Results LTE band 5

The EUT was set to transmit the maximum power.

12.2.1 RF output power

Description:

This paragraph contains conducted average power, ERP and Peak-to-Average Power Ratio measurements for the mobile station.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:	Sample			
AQT:	See plot			
Resolution bandwidth:	1 MHz			
Used equipment:	See chapter 7.1 setup A & 7.4 setup A			
Measurement uncertainty:	see chapter 9			
Measurement procedure:	FCC: § 2.1046 ISED: RSS-Gen, 6.12			

Limits:

FCC	ISED	
§ 22.913(a)(5) & (d)	RSS-132, 5.4	
 (a)(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 W. (d) The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB. 	The equivalent radiated power (e.r.p.) shall not exceed 7 watts for mobile equipment and 3 watts for portable equipment. The peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB [].	
Power: 38.45 dBm ERP PAPR: 13 dB		

Results:

Output Power (conducted)

Bandwidth (MHz)	Channel No. / Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)
	20407 /	1 RB low	16,0	5,7	14,9	6,7
	20407 / 824.7	1 RB high	15,9	5,8	15,0	6,7
	024.7	100% RB	14,2	6,1	14,3	7,0
	00505 /	1 RB low	16,2	5,7	14,8	6,8
1.4	20525 / 836.5	1 RB high	15,9	5,8	14,8	6,8
	030.5	100% RB	14,3	6,1	14,3	7,0
	00640.4	1 RB low	16,2	5,7	15,2	6,6
	20643 / 848.3	1 RB high	16,2	5,8	15,0	6,8
	040.5	100% RB	14,2	6,5	14,1	7,1
	00415/	1 RB low	16,1	5,7	14,1	7,5
	20415 / 825.5	1 RB high	15,1	6,6	15,0	6,7
	025.5	100% RB	13,6	7,0	13,3	7,8
		1 RB low	16,2	5,7	15,0	6,7
3	20525 / 836.5	1 RB high	16,0	5,8	15,0	6,7
	630.5	100% RB	14,2	6,1	14,4	7,0
		1 RB low	15,4	6,5	14,6	6,9
	20635 /	1 RB high	15,2	6,6	14,6	6,9
	847.5	100% RB	14,2	6,4	10,8	10,1
		1 RB low	17,8	4,0	17,9	4,5
	20425 /	1 RB high	17,7	4,0	17,7	4,6
	826.5	100% RB	17,0	4,6	15,8	5,5
		1 RB low	18,0	3,9	17,9	4,5
5	20525 /	1 RB high	17,8	4,0	17,7	4,5
	836.5	100% RB	17,0	4,5	15,9	5,5
		1 RB low	18,3	3,8	18,1	4,3
	20625 /	1 RB high	18,2	3,9	17,9	4,4
	846.5	100% RB	17,1	4,6	16,0	5,5
		1 RB low	17,8	4,0	17,7	4,6
10	20450 /	1 RB high	17,5	4,1	17,6	4,6
	829.0	100% RB	17,0	4,6	16,9	5,3
	00505 /	1 RB low	17,8	4,0	17,6	4,5
	20525 /	1 RB high	17,8	4,0	17,5	4,6
	836.5	100% RB	17,1	4,5	17,0	5,2
		1 RB low	18,1	3,8	17,9	4,3
	20600 /	1 RB high	18,0	3,9	17,8	4,4
	844.0	100% RB	17,0	4,6	17,1	5,1

Output Power (ERP)				
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	
	824.7	16.0	15.0	
1.4	836.5	16.2	14.8	
	848.3	16.2	15.2	
	825.5	16.1	15.0	
3	836.5	16.2	15.0	
	847.5	15.4	14.6	
	826.5	17.8	17.9	
5	836.5	18.0	17.9	
	846.5	18.3	18.1	
	829.0	17.8	17.7	
10	836.5	17.8	17.6	
	844.0	18.1	17.9	

The radiated output power is measured in the mode with the highest conducted output power.

12.2.2 Frequency stability

Description:

In order to measure the carrier frequency under normal conditions it is necessary to make measurements with the mobile station connected to a R&S CMW500 Wideband Radio Communication Tester.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom}, connected to the CMW500 on the centre channel with channel bandwidth of 10 MHz, measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 15 minutes at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage to V_{min} and measure the carrier frequency then setup V_{max} and repeat the measurement.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMW500			
Resolution bandwidth:	Measured with CMW500			
Span:				
Trace-Mode:				
Test setup:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1055 ISED: RSS-Gen, 6.11			

Limits:

FCC	ISED		
§ 22.355 (Mobile Station, 821 – 896 MHz)	RSS-132, 5.3		
The carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1.	The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within each of the sub-bands when tested at the temperature and supply voltage variations specified in RSS-Gen.		
± 2.5 ppm			

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
4.1	-10	-0.01
3.7	-9	-0.01
2.5	-5	-0.01

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-28	-0.03
-20	-32	-0.04
-10	-36	-0.04
± 0	-28	-0.03
10	-17	-0.02
20	-10	-0.01
30	-9	-0.01
40	8	0.01
50	2	0.0

12.2.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 849 MHz. Measurement made up to 9 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 5.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	2 s		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A & 7.2 setup A, B		
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1053 ISED: RSS-Gen, 6.13		

Limits:

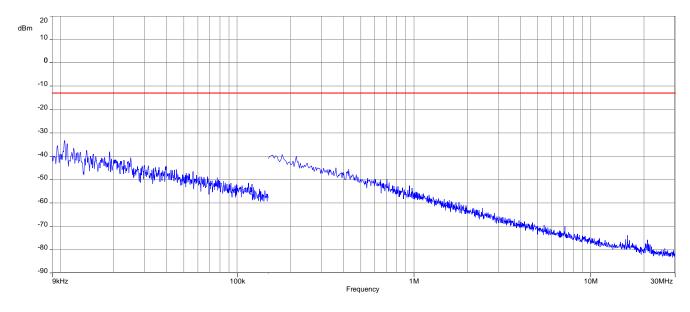
FCC	ISED			
§ 22.917(a) & (b)	RSS-132, 5.5			
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required. 			
-13 dBm				

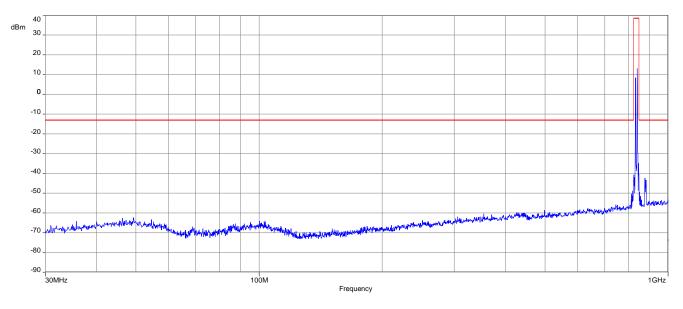
Results:

<u>QPSK:</u>

Spurious Emission Level					
Lowest channel Middle channel			Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
-/-		All detected emissions are more than 20 dB below the limit.		-/-	
-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-

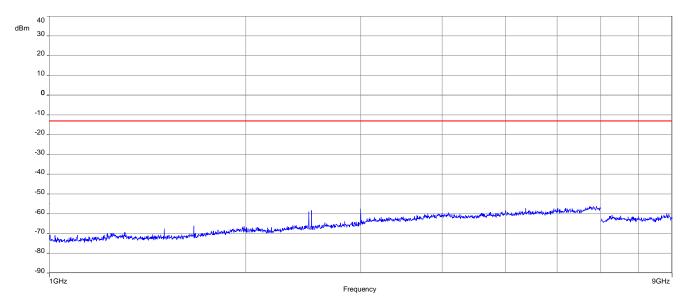
<u> 16-QAM:</u>


Spurious Emission Level					
Lowest channel Middle channel			Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
-/-		All detected emissions are more than 20 dB below the limit.		-/-	-
-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-

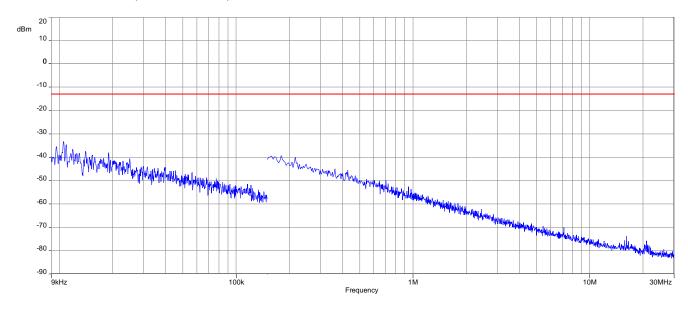


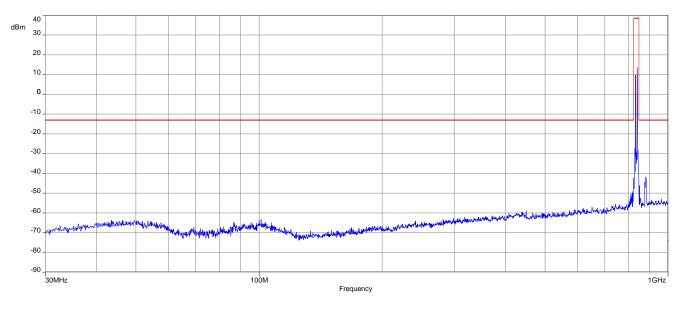
<u>QPSK</u>

Plot 1: Mid channel (9 kHz - 30 MHz)


Plot 2: Mid channel (30 MHz - 1 GHz)

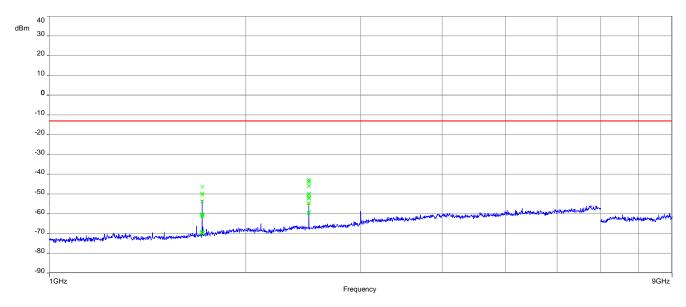
Plot 3: Mid channel (1 GHz – 9 GHz)





<u>16-QAM</u>

Plot 1: Mid channel (9 kHz - 30 MHz)


Plot 2: Mid channel (30 MHz - 1 GHz)

Plot 3: Mid channel (1 GHz – 9 GHz)

12.2.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From § 2.1057 & RSS-Gen, 6.13.2 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	10 MHz – 8.5 GHz		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1051 ISED: RSS-Gen, 6.13		

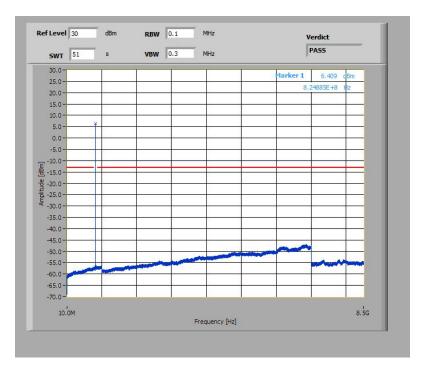
Test report no.: 1-6998_23-02-08_TR1-R1

FCC	ISED
§ 22.917(a) & (b)	RSS-132, 5.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
-13	dBm

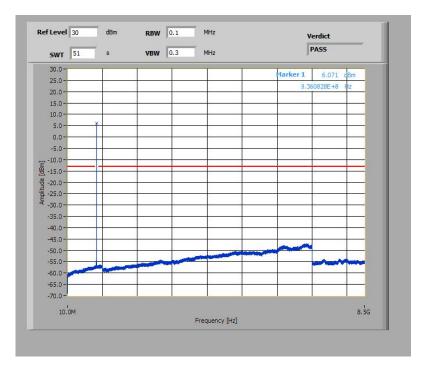
Results: for 1.4 MHz channel bandwidth

<u>QPSK</u>

			Spurio	us Emissio	n Level			
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-

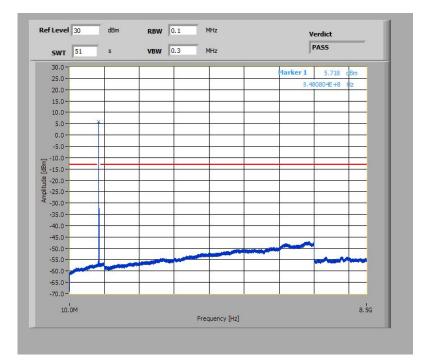

<u>16-QAM</u>

			Spurio	us Emissior	n LeveL			
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-

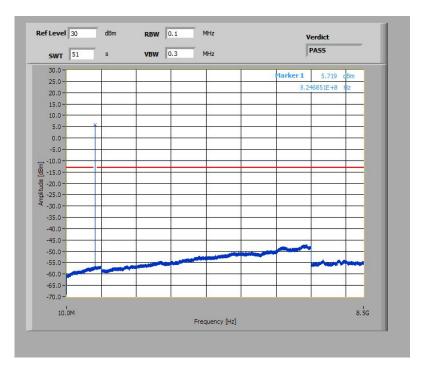


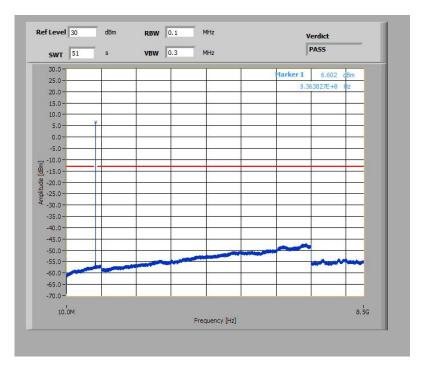
Plots: QPSK with 1.4 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz – 8.5 GHz)



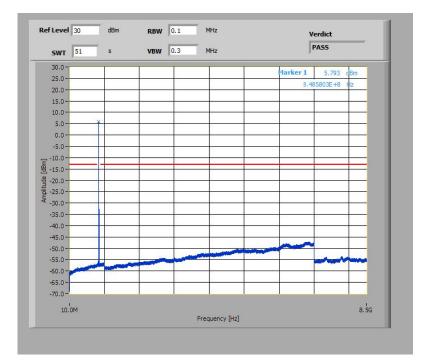
Plot 2: Middle Channel (10 MHz - 8.5 GHz)


Plot 3: Highest Channel (10 MHz – 8.5 GHz)



Plots: 16-QAM with 1.4 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz – 8.5 GHz)



Plot 2: Middle Channel (10 MHz – 8.5 GHz)

Plot 3: Highest Channel (10 MHz – 8.5 GHz)

12.2.5 Block edge compliance

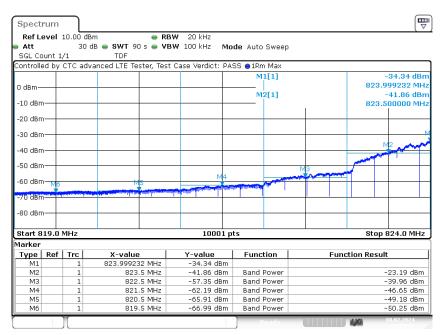
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measuremer	nt parameters	
Detector:	RMS	
Sweep time:	180s	
Video bandwidth:	100 kHz	
Resolution bandwidth:	20 kHz	
Span:	1 MHz steps	
Trace mode:	Max Hold	
Used equipment:	See chapter 7.4 setup A	
Measurement uncertainty:	See chapter 9	
Measurement procedure:	FCC: § 2.1051 ISED: RSS-Gen, 6.13	

Test report no.: 1-6998_23-02-08_TR1-R1


FCC	ISED
§ 22.917(a) & (b)	RSS-132, 5.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
	dBm
	0810 if RBW < 1 % emission bandwidth: A here
	; whereas: RBW1 = Y, RBW2 = Z

Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Date: 8.FEB.2024 12:04:49

PofL	ouol ·	LO.00 dE	3m 🖷 Ri	3W 20 kHz			
Att	ever.		dB 👄 SWT 90 s 👄 VI		de Auto Sweep		
SGL Co	unt 1.			BW 100 KH2 140	ue Auto Sweep		
			vanced LTE Tester, Tes	t Case Verdict: PA9	SS 🗛 1 Rm Max		
Sonreione		010 441			M1[1]		-36.73 dBi
0 dBm-							849.000768 MF
o asm-					M2[1]		-43.48 dB
-10 dBm	n——						849,500000 MH
-20 dBm							
-30 dBm							
-40 aba	MP2						
-50 dBm		m					
-30 ubii			M3				
-6 <mark>0 dBrr</mark>	n——		. norman and a state of the	M4			M6
					Contraction of the local division of the		
-7 <mark>0 dBm</mark>	דרי						
-80 dBm	n——						
Start 8	49.0	MHz		10001 pt	s		Stop 854.0 MHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1		1	849.000768 MHz	-36.73 dBm			
M2		1	849.5 MHz	-43.48 dBm	Band Power		-25.22 dBm
MЗ		1	850.5 MHz	-57.07 dBm	Band Power		-40.26 dBm
M4		1	851.5 MHz	-62.53 dBm	Band Power		-46.23 dBm
M5 M6		1	852.5 MHz 853.5 MHz	-65.30 dBm -66.96 dBm	Band Power Band Power		-49.06 dBm -50.24 dBm

Plot 2: Highest channel – QPSK

Date: 8.FEB.2024 12:24:59

Plot 3: Lowest channel - 16-QAM

Spect		Ļ					7]
	evel	10.00 dB					
Att			dB 👄 SWT 90 s 👄 V	BW 100 kHz Mo	de Auto Sweep	1	
SGL Co			TDF				
ontrolle	ed by	CTC adv	vanced LTE Tester, Tes	st Case Verdict: PAS			
					M1[1]		-35.68 dBr
) dBm—							823.999232 MH
					M2[1]		-41.61 dBr
10 dBm							823.500000 MH
20 dBm							
30 dBm	ı						
40 dBm							M2
to ubn	'						A CONTRACTOR OF THE OWNER
50 dBm						MB	
				ми	-		
60 dBm	M6		M5	X			
70 UBII	-		and the second s				
80 dBm							
Start 8	19.0	MHZ		10001 pt	ls		Stop 824.0 MHz
larker						1	
Туре	Ref		X-value	Y-value	Function	Fund	tion Result
M1		1	823.999232 MHz	-35.68 dBm			
M2		1	823.5 MHz	-41.61 dBm	Band Power		-23.61 dBm
M3		1	822.5 MHz	-57.58 dBm	Band Power		-39.26 dBm
M4 M5		1	821.5 MHz 820.5 MHz	-64.40 dBm -68.07 dBm	Band Power Band Power		-47.97 dBm -51.02 dBm
M6		1	820.5 MHZ 819.5 MHz	-68.07 dBm	Band Power		-51.02 uBm -51.89 dBm

Date: 8.FEB.2024 12:10:39

Refle	avel	10.00 c	iBm 🖷 RI	3W 20 kHz			
Att			IdB 🖷 SWT 90 s 🖷 VI		de Auto Sweep		
SGL Co	unt 1		TDF		ue Auto Sweep		
			Ivanced LTE Tester, Tes	t Case Verdict: PA9	SS 🗛 1 Rm Max		
Sontrolle	<u>, a b</u> ,	0.0 00			M1[1]		-36.12 dB
0 dBm—							849.005760 MH
U UBIII-					M2[1]		-43.44 dB
-10 dBm	∩						849,500000 MH
-20 dBm	<u>ו</u> רי						
130 dBm							
i i							
-40 dBn							
-50 dBm							
-30 000	'	["]	M3				
-60 d <mark>B</mark> m				M4		MS	M6
				A CONTRACTOR OF THE OWNER	CONTRACTOR OF STREET, STREET, ST.	THE REPORT OF THE REPORT OF	
-70 dBm							
-80 dBm							
Start 8	49.0	MHz		10001 pt	ts	1	Stop 854.0 MHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Fur	iction Result
M1		1	849.00576 MHz	-36.12 dBm			
M2		1	849.5 MHz	-43.44 dBm	Band Power		-24.68 dBm
MЗ		1	850.5 MHz	-57.54 dBm	Band Power		-39.89 dBm
M4		1	851.5 MHz	-63.33 dBm	Band Power		-46.01 dBm
M5 M6		1	852.5 MHz	-65.85 dBm	Band Power Band Power		-49.18 dBm
		<u> </u>	853.5 MHz	-67.19 dBm	bariu Power		-50.47 dBm

Plot 4: Highest channel - 16-QAM

Date: 8.FEB.2024 12:30:45

12.2.6 Occupied bandwidth

Description:

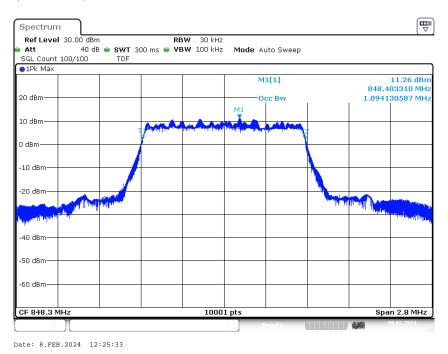
Measurement of the occupied bandwidth of the transmitted signal.

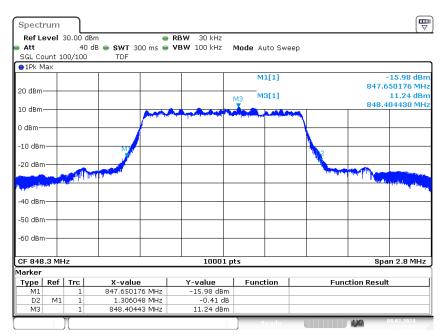
Measureme	ent parameters		
Detector:	Peak		
Sweep time:	180s		
Resolution bandwidth:	30 kHz		
Video bandwidth:	100 kHz		
Span:	2 x nominal BW		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1049 ISED: RSS-Gen, 6.7		

FCC	ISED			
§ 2.1049	RSS-Gen, 6.7			
Reporting only				

Results:

Occupied Bandwidth – QPSK						
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)				
824.7	1093	1288				
836.5	1092	1292				
848.3	1094	1306				

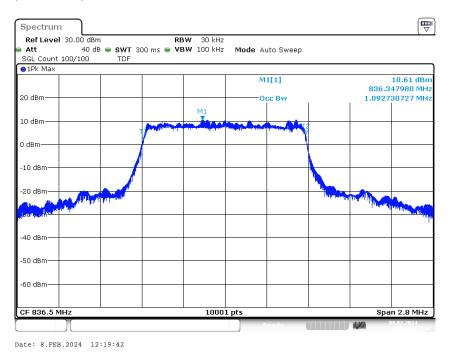

Occupied Bandwidth – 16-QAM						
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)				
824.7	1093	1288				
836.5	1093	1301				
848.3	1093	1268				

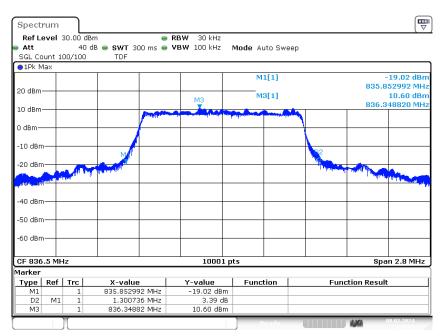


Plots: QPSK, worst case plots

Plot 1: high channel (99% - OBW)

Plot 2: high channel (-26 dBc BW)


Date: 8.FEB.2024 12:26:06



Plots: 16-QAM, worst case plots

Plot 1: mid channel (99% - OBW)

Plot 2: mid channel (-26 dBc BW)

Date: 8.FEB.2024 12:20:15

12.3 Results LTE band 26a

The EUT was set to transmit the maximum power.

12.3.1 RF output power

Description:

This paragraph contains conducted average power, ERP and Peak-to-Average Power Ratio measurements for the mobile station.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector:	Sample		
AQT:	See plot		
Resolution bandwidth:	1 MHz		
Used equipment:	See chapter 7.1 setup A & 7.4 setup A		
Measurement uncertainty:	see chapter 9		
Measurement procedure:	FCC: § 2.1046 ISED: RSS-Gen, 6.12		

<u>Limits:</u>

FCC	ISED		
§ 22.913(a)(5) & (d)	RSS-132, 5.4		
 (a)(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 W. (d) The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB. 	The equivalent radiated power (e.r.p.) shall not exceed 7 watts for mobile equipment and 3 watts for portable equipment. The peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB [].		
Power: 38.45 dBm ERP PAPR: 13 dB			

Results:

	Output Power (conducted)						
Bandwidth (MHz)	Channel No. / Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)	
	00407 /	1 RB low	16.6	5.6	15.3	6.6	
	20407 / 824.7	1 RB high	16.5	5.7	15.4	6.7	
	024.7	100% RB	14.6	6.2	14.7	7.0	
	00505 /	1 RB low	16.5	5.6	15.1	6.7	
1.4	20525 / 836.5	1 RB high	16.3	5.7	15.1	6.7	
	030.5	100% RB	14.5	6.1	14.6	7.0	
	00640.4	1 RB low	16.6	5.6	15.6	6.5	
	20643 / 848.3	1 RB high	16.5	5.7	15.6	6.5	
	040.5	100% RB	14.6	6.4	14.6	7.1	
	004157	1 RB low	16.5	5.7	15.1	6.7	
	20415 / 825.5	1 RB high	16.2	5.7	15.2	6.8	
	025.5	100% RB	14.5	6.3	14.6	7.0	
	00505 /	1 RB low	16.6	5.6	15.6	6.5	
3	20525 /	1 RB high	15.6	6.5	15.6	6.6	
	836.5	100% RB	14.4	6.2	14.5	7.0	
	00105/	1 RB low	16.8	5.5	15.4	6.4	
	20635 / 847.5	1 RB high	16.6	5.6	15.2	6.5	
	047.5	100% RB	13.8	7.1	14.4	7.0	
	00405 /	1 RB low	18.2	3.9	18.2	4.4	
	20425 / 826.5	1 RB high	18.1	4.0	18.1	4.4	
	020.5	100% RB	17.3	4.5	16.1	5.4	
	00505 /	1 RB low	18.3	3.9	18.2	4.3	
5	20525 / 836.5	1 RB high	18.1	3.9	18.1	4.3	
	030.5	100% RB	17.2	4.5	16.1	5.4	
	00/05/	1 RB low	18.7	3.6	18.5	4.1	
	20625 / 846.5	1 RB high	18.5	3.7	18.3	4.2	
	640.5	100% RB	17.4	4.5	16.4	5.4	
	00450 /	1 RB low	18.2	3.9	18.0	4.4	
	20450 / 829.0	1 RB high	18.0	4.0	18.0	4.4	
	029.0	100% RB	17.3	4.5	17.3	5.2	
		1 RB low	18.2	3.9	18.1	4.3	
10	20525 / 836.5	1 RB high	18.0	3.9	17.9	4.4	
	000.0	100% RB	17.4	4.4	17.2	5.1	
	20600 /	1 RB low	18.5	3.7	18.3	4.2	
	20600 / 844.0	1 RB high	18.3	3.8	18.2	4.2	
	044.0	100% RB	17.4	4.5	17.5	5.0	

Output Power (ERP)					
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM		
	824.7	16.6	15.4		
1.4	836.5	16.5	15.1		
	848.3	16.6	15.6		
	825.5	16.5	15.2		
3	836.5	16.6	15.6		
	847.5	16.8	15.4		
	826.5	18.2	18.2		
5	836.5	18.3	18.2		
	846.5	18.7	18.5		
	829.0	18.2	18.0		
10	836.5	18.2	18.1		
	844.0	18.5	18.3		

The radiated output power is measured in the mode with the highest conducted output power.

12.3.2 Frequency stability

Description:

In order to measure the carrier frequency under normal conditions it is necessary to make measurements with the mobile station connected to a R&S CMW500 Wideband Radio Communication Tester.

- 7. Measure the carrier frequency at room temperature.
- 8. Subject the mobile station to overnight soak at -30 C.
- With the mobile station, powered with V_{nom}, connected to the CMW500 on the centre channel with channel bandwidth of 10 MHz, measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 10. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 15 minutes at each temperature, unpowered, before making measurements.
- 11. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage to V_{min} and measure the carrier frequency then setup V_{max} and repeat the measurement.
- 12. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMW500			
Resolution bandwidth:	Measured with CMW500			
Span:				
Trace-Mode:				
Test setup:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1055 ISED: RSS-Gen, 6.11			

FCC	ISED			
§ 22.355 (Mobile Station, 821 – 896 MHz)	RSS-132, 5.3 (Mobile Station)			
The carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1.	The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within each of the sub-bands when tested at the temperature and supply voltage variations specified in RSS-Gen.			
± 2.5 ppm				

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
4.1	9	0.01
3.7	9	0.01
2.5	7	0.01

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-22	-0.03
-20	-17	-0.02
-10	-10	-0.01
± 0	-3	0.0
10	-4	-0.01
20	9	0.01
30	0	0.0
40	-16	-0.02
50	7	0.01

12.3.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 849 MHz. Measurement made up to 9 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 26a.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	2 s		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A & 7.2 setup A, B		
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1053 ISED: RSS-Gen, 6.13		

Test report no.: 1-6998_23-02-08_TR1-R1

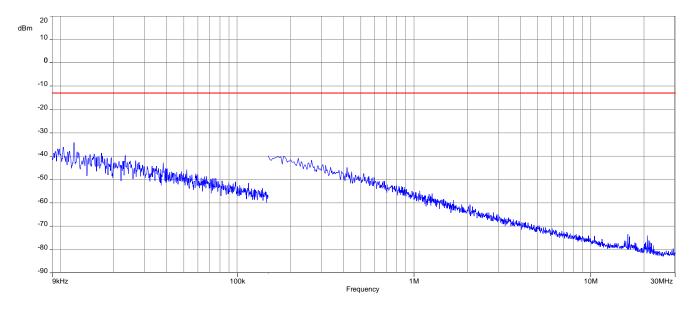
FCC	ISED
§ 22.917(a) & (b)	RSS-132, 5.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
	-13 dBm

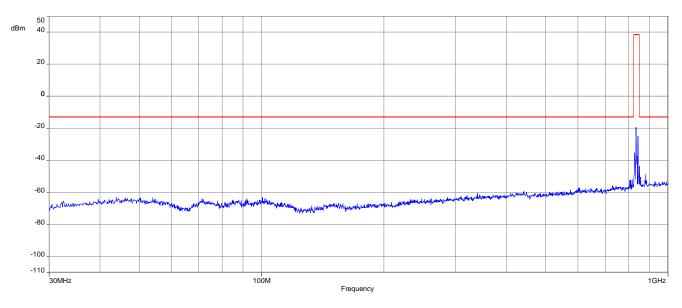
Results:

<u>QPSK:</u>

Spurious Emission Level							
Lowest o	hannel	Middle c	hannel	Highest channel			
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]		
-/-		All detected emissions are more than 20 dB below the limit.		-/·	-		
-/-	-/-	-/-	-/-	-/-	-/-		
-/-	-/-	-/-	-/-	-/-	-/-		

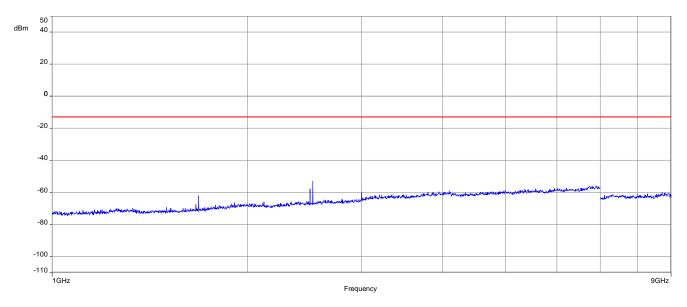
<u> 16-QAM:</u>


Spurious Emission Level							
Lowest o	hannel	Middle c	Middle channel Highest channe		channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]		
-/-	All detected emissions are more than 20 dB below the limit.		-/-	-			
-/-	-/-	-/-	-/-	-/-	-/-		
-/-	-/-	-/-	-/-	-/-	-/-		

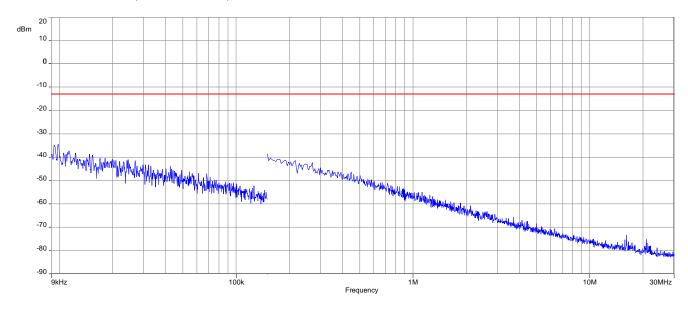


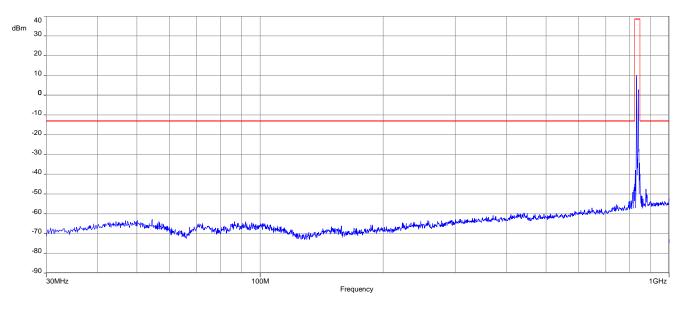
<u>QPSK</u>

Plot 1: Mid channel (9 kHz - 30 MHz)


Plot 2: Mid channel (30 MHz - 1 GHz)

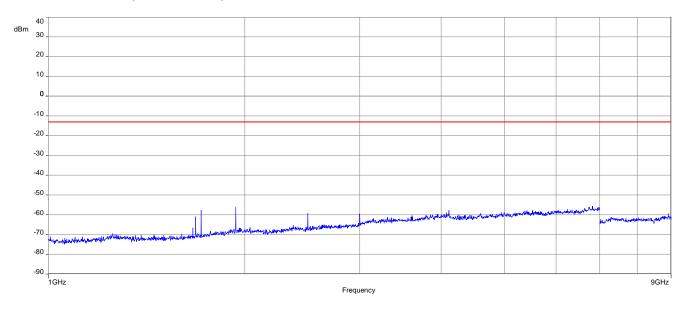
Plot 3: Mid channel (1 GHz – 9 GHz)





<u>16-QAM</u>

Plot 1: Mid channel (9 kHz - 30 MHz)


Plot 2: Mid channel (30 MHz - 1 GHz)

Plot 3: Mid channel (1 GHz – 9 GHz)

12.3.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From § 2.1057 & RSS-Gen, 6.13.2 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	10 MHz – 8.5 GHz			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1051 ISED: RSS-Gen, 6.13			

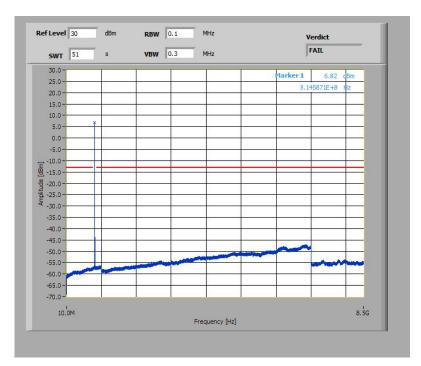
Test report no.: 1-6998_23-02-08_TR1-R1

FCC	ISED
§ 22.917(a) & (b)	RSS-132, 5.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
-13	dBm

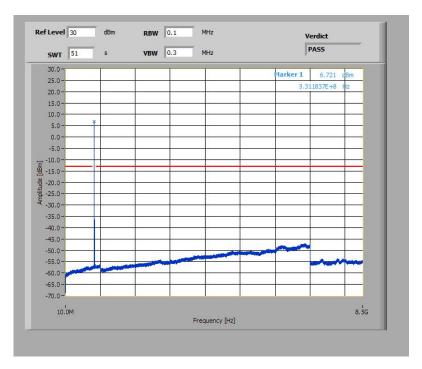
Results: for 1.4 MHz channel bandwidth

<u>QPSK</u>

	Spurious Emission Level								
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	

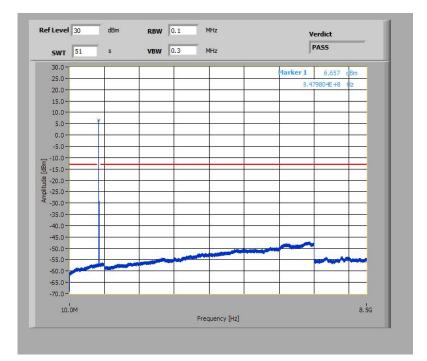

<u>16-QAM</u>

	Spurious Emission LeveL								
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	

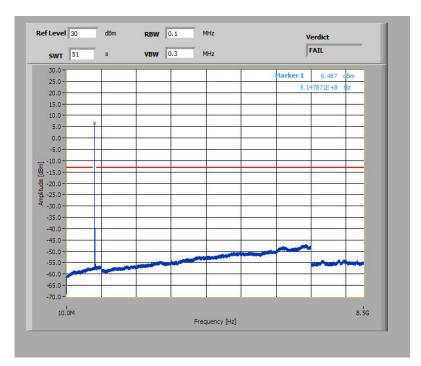


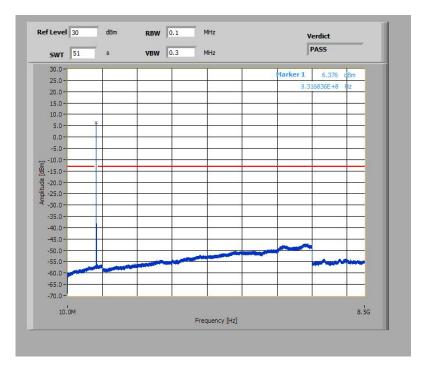
Plots: QPSK with 1.4 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz – 8.5 GHz)



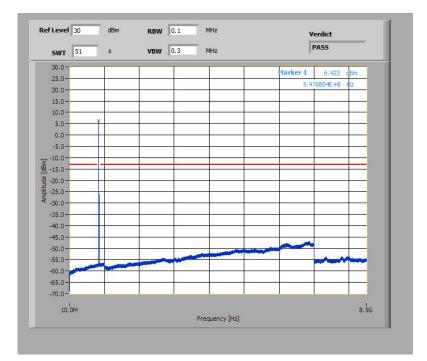
Plot 2: Middle Channel (10 MHz - 8.5 GHz)


Plot 3: Highest Channel (10 MHz – 8.5 GHz)



Plots: 16-QAM with 1.4 MHz channel bandwidth

Plot 1: Lowest Channel (10 MHz – 8.5 GHz)



Plot 2: Middle Channel (10 MHz – 8.5 GHz)

Plot 3: Highest Channel (10 MHz – 8.5 GHz)

12.3.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measurement parameters				
Detector:	RMS			
Sweep time:	180s			
Video bandwidth:	100 kHz			
Resolution bandwidth:	20 kHz			
Span:	1 MHz steps			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1051 ISED: RSS-Gen, 6.13			

Test report no.: 1-6998_23-02-08_TR1-R1

FCC	ISED
§ 22.917(a) & (b)	RSS-132, 5.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b)(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a RBW of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (b)(2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz. 	 i. In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). ii. After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10(P) (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.
	dBm
-	0810 if RBW < 1 % emission bandwidth: A here
	; whereas: RBW1 = Y, RBW2 = Z

Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Spect							
	evel	10.00 dE					
Att			dB 👄 SWT 90 s 👄 V	BW 100 kHz Mo	de Auto Sweep		
SGL Co			TDF				
ontrolle	ed by	CTC adv	vanced LTE Tester, Tes	t Case Verdict: PA9	65 😑 1 Rm Max		
					M1[1]		-68.32 dBr
) dBm—							823.788288 MH
					M2[1]		-69.34 dBr
10 dBm							823.500000 MH
20 dBm							
20 UBII							
30 dBm			_				
40 dBm							
50 dBm	<u> </u>						
-60 dBm	M6		M5	M4		M3	M2 M1
70 dBm	1410			"F			
90 ubii							
80 dBm							
Start 8	19.0	МНz		10001 pt	ts		Stop 824.0 MHz
larker				•			•
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	823.788288 MHz	-68.32 dBm			
M2		1	823.5 MHz	-69.34 dBm	Band Power		-52.45 dBm
MЗ		1	822.5 MHz	-68.70 dBm	Band Power		-52.30 dBm
M4		1	821.5 MHz	-68.56 dBm	Band Power		-52.04 dBm
M5		1	820.5 MHz	-68.61 dBm	Band Power		-51.79 dBm
M6		1	819.5 MHz	-68.50 dBm	Band Power		-51.28 dBm

Date: 9.FEB.2024 10:16:37

Refli	ovel	10.00 c	iBm 🖷 RB	W 20 kHz			(
Att			dB 🖷 SWT 90 s 🖷 VB		de Auto Sweep		
SGL Co	unt 1		TDF	W 100 KH2 WO	ae Auto Sweep		
			Ivanced LTE Tester, Test	Case Verdict: PAS	SS 🗛 1 Rm Max		
Sontrolle		0.0 00			M1[1]		-35.54 dBr
0 dBm—							849.020224 MH
u asm—					M2[1]		-42.51 dBr
-10 dBm							849.500000 MH
-20 dBm	∩						
130 dBm	\						
-40 08.	М2						
	T.T.	-					
-50 dBm	η 		Ma	-			
-60 dBm			The second second	M4			
-өс авп			and the second sec	THE OWNER WHEN THE OWNER		MS	M6
-70 dBm					and the second	The second second second second second	
-80 dBm) 						
Start 8	49.0	MHz		10001 pt	s		Stop 854.0 MHz
4arker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	849.020224 MHz	-35.54 dBm			
M2		1	849.5 MHz	-42.51 dBm	Band Power		-24.49 dBm
MЗ		1	850.5 MHz	-57.67 dBm	Band Power	-40.30 dB	
M4		1	851.5 MHz	-63.66 dBm	Band Power	-46.85 d	
M5		1	852.5 MHz	-66.98 dBm	Band Power		-49.90 dBm
M6		1	853.5 MHz	-67.45 dBm	Band Power		-50.94 dBm

Plot 2: Highest channel – QPSK

Date: 9.FEB.2024 10:36:39

Plot 3: Lowest channel - 16-QAM

Spect		10.00 dB	m 🖷 RE	3W 20 kHz				7
Att	evei		m 🖷 RE B 🖶 SWT 90 s 🖶 VI					
SGL Co	unt 1		TDF		ae Auto Sweep	1		
			anced LTE Tester, Tes	t Casa Vardiaty DAG	C AlBro Mou			
oncrone	su by	cic auv		Case Verdict, FAC	M1[1]			-67.99 dBi
					MILI			-67.99 UB 381856 MH
) dBm—					M2[1]			-69.44 dBi
10 dBm								500000 MH
						1	0201	1
20 dBm	∩							
30 dBm								
50 abri	'							
40 dBm	∩							-
50 dBm								
SU aBM								
60 dBm								_
			M5	M4		MB	M1	V <mark>1</mark> 2
70 dBm) — [al and al familiar books of a parameter of a state of the second second second second second second second seco	- /v 34-,		
80 dBm								
Start 8	19.0	MHz		10001 pt	s		Stop	824.0 MHz
arker								
Type	Ref	Trc	X-value	Y-value	Function		Function Resu	t
M1		1	823.081856 MHz	-67.99 dBm	r unocioni		unocion nosa	
M2		1	823.5 MHz	-69.44 dBm	Band Power	-52.23		
MЗ		1	822.5 MHz	-68.26 dBm	Band Power	-51.92		
M4		1	821.5 MHz	-68.22 dBm	Band Power			-51.58 dBm
M5		1	820.5 MHz	-68.37 dBm	Band Power			-51.12 dBm
M6		1	819.5 MHz	-67.36 dBm	Band Power			-50.56 dBm

Date: 9.FEB.2024 10:22:23

	LO.00 c		BW 20 kHz					
	30) dB 🖷 SWT 90 s 🖷 V		de Auto Sweep				
unt 1/		TDF						
d by (CTC ac	dvanced LTE Tester, Tes	t Case Verdict: PAS	55 😑 1Rm Max				
Í				M1[1]		-35.97 dB		
						849.007232 MF		
				M2[1]		-43.11 dB		
_						849.500000 MH		
MO								
-		_						
	Mar and							
		Manna Ma						
			THE REPORT OF THE REPORT OF THE		M5	176		
			a second s	A REAL PROPERTY OF THE PARTY OF T	OPERATOR OF THE OWNER OF T			
_								
19.0 N	4Hz		10001 pt	ts	•	Stop 854.0 MH		
Ref	Trc	X-value	Y-value	Function	Fund	ction Result		
	1	849.007232 MHz	-35.97 dBm					
	1	849.5 MHz	-43.11 dBm			-24.20 dBn		
						-39.94 dBn		
	-					-45.84 dBm		
	-					-48.94 dBm -50.21 dBm		
	.M2	9.0 MHz	M2 M3 9.0 MHz 849.007232 MHz 1 849.5 MHz 1 851.5 MHz 1 852.5 MHz	M2 M3 M4 9.0 MHz 10001 pt 1 849.07232 MHz -35.97 dBm 1 849.5 MHz -43.11 dBm 1 849.5 MHz -57.69 dBm 1 851.5 MHz -63.06 dBm 1 852.5 MHz -63.05 dBm	M1[1] M2[1] M3[1] M4 M2 M3[1] M4 M4 M4 M4 M4 M4 M4	M2 M3 M4 M5 9.0 MHz 10001 pts 10001 pts Function Function 1 849.007232 MHz -43.11 dBm Band Power 1 849.5 MHz -57.69 dBm Band Power 1 850.5 MHz -53.06 dBm Band Power 1 852.5 MHz -65.05 dBm Band Power		

Plot 4: Highest channel - 16-QAM

Date: 9.FEB.2024 10:42:23

12.3.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

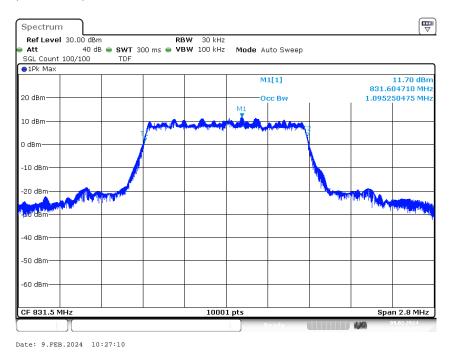
Measurement parameters					
Detector:	Peak				
Sweep time:	180s				
Resolution bandwidth:	30 kHz				
Video bandwidth:	100 kHz				
Span:	2 x nominal BW				
Trace mode:	Max Hold				
Used equipment:	See chapter 7.4 setup A				
Measurement uncertainty:	See chapter 9				
Measurement procedure:	FCC: § 2.1049 ISED: RSS-Gen, 6.7				

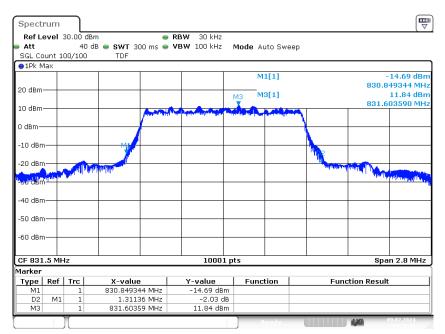
Limits:

FCC	ISED				
§ 2.1049	RSS-Gen, 6.7				
Reporting only					

Results:

Occupied Bandwidth - QPSK								
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)						
824.7	1089	1276						
836.5	1095	1311						
848.3	1087	1288						

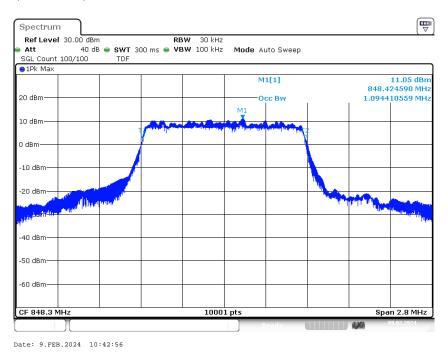

Occupied Bandwidth – 16-QAM								
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)						
824.7	1076	1306						
836.5	1092	1268						
848.3	1094	1358						

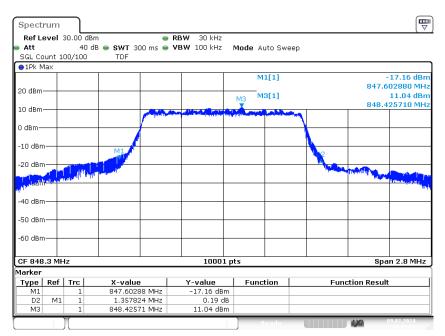


Plots: QPSK, worst case plots

Plot 1: mid channel (99% - OBW)

Plot 2: mid channel (-26 dBc BW)


Date: 9.FEB.2024 10:27:43



Plots: 16-QAM, worst case plots

Plot 1: high channel (99% - OBW)

Plot 2: high channel (-26 dBc BW)

Date: 9.FEB.2024 10:43:29

There were deviations from the technical specifications	s ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are	e listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC: CFR Part 2 & Part 24 ISED: RSS-Gen, Issue 5 RSS 133, Issue 6 & SRSP-510, Issue 5 RSS 132	See table!	2024-09-04	-/-

13.1 Part 24/RSS-133: LTE band 2

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	X				-/-
Frequency Stability	Extreme	Extreme	\boxtimes				-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

cetecom

13.2 Part 24/RSS-133: LTE band 25

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme					-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

14 RF measurements

14.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

14.2 Results LTE band 2

The EUT was set to transmit the maximum power.

14.2.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector: Sample			
AQT:	See plot		
Resolution bandwidth: 1 MHz			
Used equipment: See chapter 7.2 setup C & 7.4 setup A			
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1046 ISED: RSS-Gen, 6.12		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED		
\$24.232(c)	RSS-133, 6.4 (referring to: SRSP-510, Issue 5)		
 (c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications. (d) In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. 	SRSP-510, 5.1: Mobile stations and hand-held portables are limited to 2 watts maximum e.i.r.p. RSS-133, 6.4: In addition, the transmitter's peak-to- average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.		
Power: 33 dBm EIRP			
PAPR: 13 dB			

Results:

Output Power (conducted)						
Bandwidth (MHz)	Channel No. / Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)
	18607 /	1 RB low	18,5	5,9	17,3	7,0
	186077	1 RB high	17,5	6,8	17,2	7,1
	1000.7	100% RB	16,3	6,8	16,3	7,5
	18900 /	1 RB low	19,1	6,1	17,9	7,2
1.4	189007	1 RB high	18,8	6,2	17,7	7,3
	1000.0	100% RB	16,9	6,9	17,0	7,6
	10100 /	1 RB low	19,4	6,1	18,3	7,2
	19193 / 1909.3	1 RB high	19,2	6,2	18,3	7,2
	1909.0	100% RB	17,4	7,0	17,5	7,6
	10(15/	1 RB low	18,5	5,9	17,2	7,0
	18615 / 1851.5	1 RB high	17,5	6,8	17,1	7,1
	1051.5	100% RB	16,3	6,8	15,5	8,3
	10000 /	1 RB low	19,0	6,1	17,9	7,2
3	18900 / 1880.0	1 RB high	18,8	6,2	17,8	7,2
	1000.0	100% RB	16,9	6,9	17,0	7,6
	10105 /	1 RB low	19,5	6,1	18,4	7,2
	19185 / 1908.5	1 RB high	19,3	6,2	18,2	7,2
	1900.0	100% RB	17,4	7,0	17,5	7,6
	10605 /	1 RB low	20,2	4,2	20,1	4,8
	18625 / 1852.5	1 RB high	20,0	4,3	20,0	4,9
	1002.0	100% RB	19,1	4,9	18,2	5,9
5	10000 /	1 RB low	20,9	4,3	20,8	4,9
	18900 / 1880.0	1 RB high	20,6	4,4	20,5	5,0
	1000.0	100% RB	19,6	5,0	18,5	6,1
	10175 /	1 RB low	21,6	4,2	21,7	4,7
	19175 / 1907.5	1 RB high	21,4	4,3	21,6	4,7
	1507.0	100% RB	20,4	5,0	19,4	6,0

	10650 /	1 RB low	20,2	4,2	20,0	4,8
	18650 / 1855.0	1 RB high	19,8	4,4	19,9	4,9
1855.0	100% RB	19,1	5,0	19,2	5,6	
	10000 /	1 RB low	20,8	4,3	20,6	4,9
10	18900 / 1880.0	1 RB high	20,4	4,4	20,5	5,0
	1000.0	100% RB	19,6	5,1	19,6	5,8
	10150 /	1 RB low	21,3	4,3	21,5	4,7
	19150 / 1905.0	1 RB high	21,3	4,3	21,3	4,8
	1903.0	100% RB	20,1	5,1	20,3	5,7
	10(75 /	1 RB low	20,0	4,3	20,0	4,8
	18675 / 1857.5	1 RB high	19,8	4,3	19,9	4,8
	1007.0	100% RB	20,0	4,6	20,1	5,0
	10000 /	1 RB low	20,7	4,3	20,7	4,8
15	18900 / 1880.0	1 RB high	20,7	4,3	20,4	5,0
	1000.0	100% RB	20,5	4,7	20,5	5,3
	10105 /	1 RB low	21,4	4,3	21,4	4,7
	19125 / 1902.5	1 RB high	21,1	4,3	21,2	4,8
1902.5	100% RB	21,0	4,8	21,1	5,2	
	10700 /	1 RB low	19,6	4,2	19,6	4,8
	18700 / 1860.0	1 RB high	19,6	4,3	19,5	4,9
	1860.0	100% RB	19,7	4,6	19,8	5,0
	10000 /	1 RB low	20,4	4,2	20,1	4,9
- 201	18900 / 1880.0	1 RB high	20,2	4,3	20,2	4,9
	1000.0	100% RB	20,3	4,7	20,3	5,2
	10100 /	1 RB low	21,3	4,2	21,3	4,7
19100 / 1900.0	1 RB high	21,0	4,3	21,1	4,8	
	100% RB	21,0	4,7	21,0	5,2	

Output Power (EIRP)				
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	
	1850.7	17,7	16,5	
1.4	1880.0	17,6	16,4	
	1909.3	17,5	16,4	
	1851.5	17,7	16,5	
3	1880.0	17,5	16,4	
	1908.5	17,6	16,5	
	1852.5	19,4	19,3	
5	1880.0	19,4	19,3	
	1907.5	19,7	19,8	
	1855.0	19,4	19,2	
10	1880.0	19,3	19,1	
	1905.0	19,4	19,6	
	1857.5	19,2	19,3	
15	1880.0	19,2	19,2	
	1902.5	19,5	19,5	
	1860.0	18,9	19,0	
20	1880.0	18,9	18,8	
	1900.0	19,4	19,4	

The radiated output power is measured in the mode with the highest conducted output power.

14.2.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMW500 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMW500 and in a simulated call on channel 9400 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/-0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMW500			
Resolution bandwidth:	Measured with CMW500			
Span:				
Trace-Mode:				
Used equipment:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1055 ISED: RSS-Gen, 6.11			

Limits:

FCC	ISED		
§ 24.235	RSS-133, 6.3		
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.	The carrier frequency shall not depart from the reference frequency, in excess of ±2.5 ppm for mobile stations and ±1.0 ppm for base stations.		
± 2.5 ppm (ISED only)			

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
4.1	-14	-0.01
3.7	-10	-0.01
2.5	-11	-0.01

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-30	-0.02
-20	-19	-0.01
-10	7	0.0
± 0	3	0.0
10	-10	-0.01
20	-14	-0.01
30	-27	-0.01
40	-52	-0.03
50	-11	-0.01

14.2.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 2.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	2 sec.		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A; 7.2 setup A, B; 7.3 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure	FCC: § 2.1053 ISED: RSS-Gen, 6.13		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

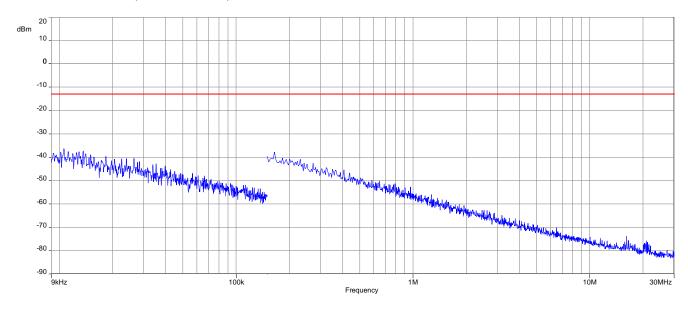
FCC	ISED			
§ 24.238 (a) & (b)	RSS-133, 6.5			
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.			
-13 dBm				

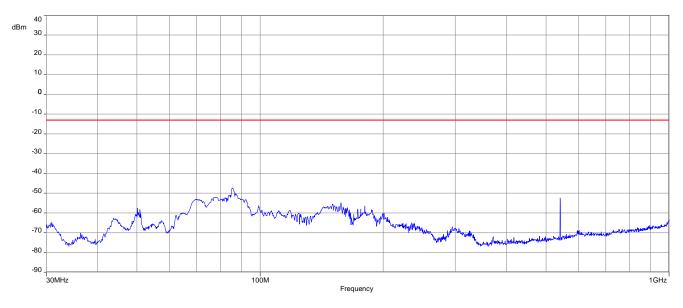
Results:

<u>QPSK:</u>

Spurious Emission Level						
Lowest channel Middle channel				Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
-/-		All detected emissions are more than 20 dB below the limit.		-/·		
-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	

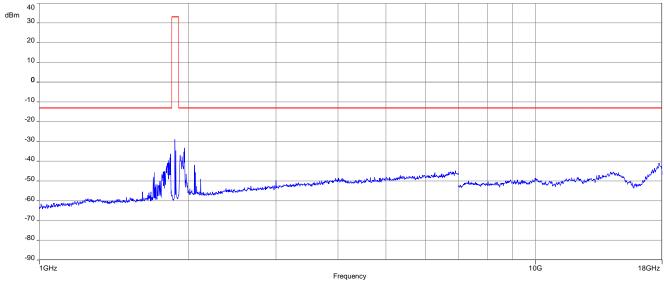
<u> 16-QAM:</u>

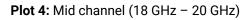

Spurious Emission Level								
Lowest channel		Middle c	hannel	Highest channel				
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]			
-/-		All detected emis than 20 dB be		-/-				
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			

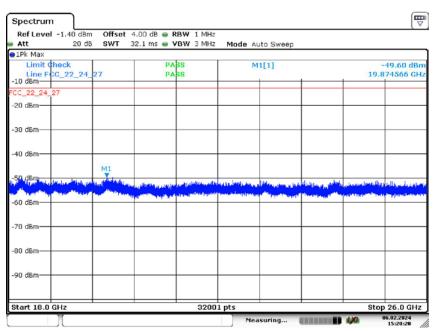


<u>QPSK</u>

Plot 1: Mid channel (9 kHz - 30 MHz)

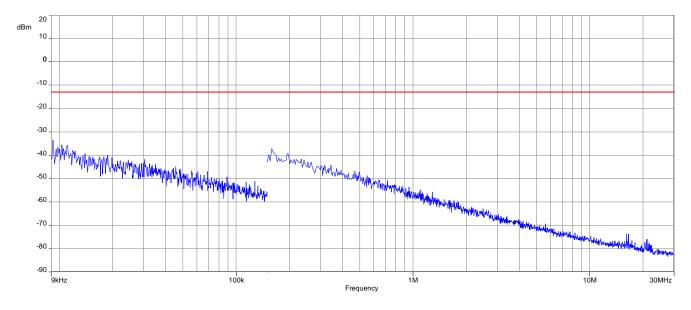

Plot 2: Mid channel (30 MHz - 1 GHz)

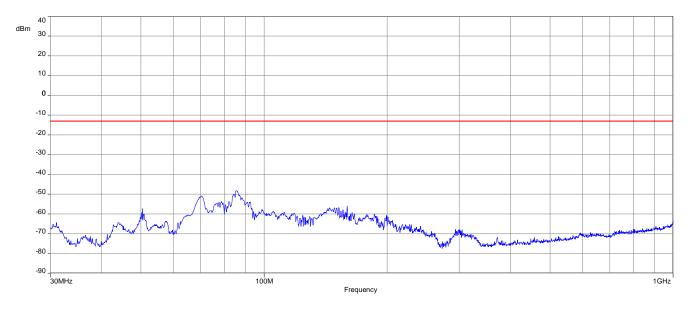




Plot 3: Mid channel (1 GHz – 18 GHz)

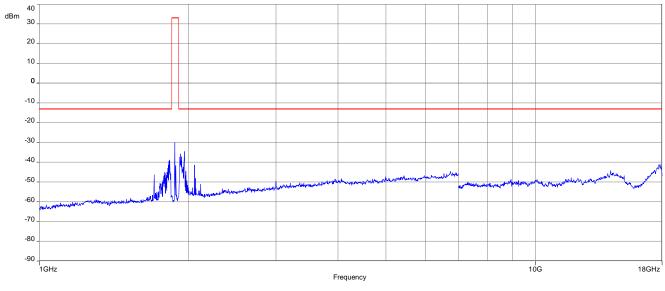
Carrier notched with 1.9 GHz rejection filter

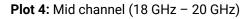

Date: 6.FEB.2024 15:20:19

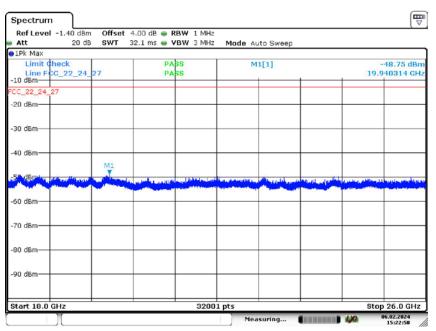


<u>16-QAM</u>

Plot 1: Mid channel (9 kHz - 30 MHz)


Plot 2: Mid channel (30 MHz - 1 GHz)





Plot 3: Mid channel (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Date: 6.FEB.2024 15:22:58

14.2.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From § 2.1057 & RSS-Gen, 6.13.2 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measuremer	t parameters
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	300 kHz
Resolution bandwidth:	100 kHz
Span:	30 MHz – 19.5 GHz
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.4 setup A
Measurement uncertainty:	see chapter 9
Measurement procedure	FCC: § 2.1051 ISED: RSS-Gen, 6.13

Test report no.: 1-6998_23-02-08_TR1-R1

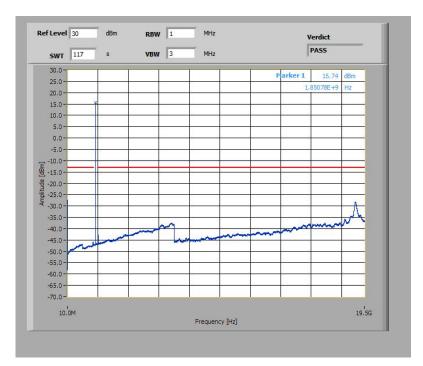
Limits:

FCC	IC
§ 24.238 (a) & (b)	RSS-133, 6.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.
-13	dBm

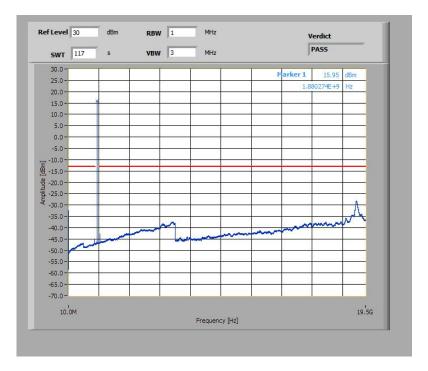
Results: for 1.4 MHz channel bandwidth

<u>QPSK:</u>

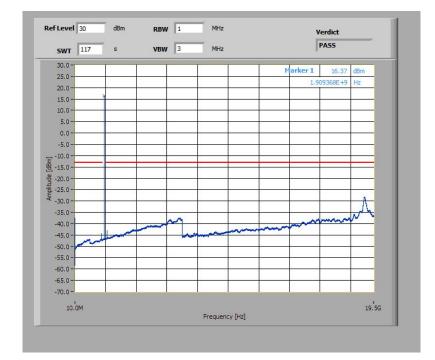
	Spurious Emission Level							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-


<u> 16-QAM:</u>

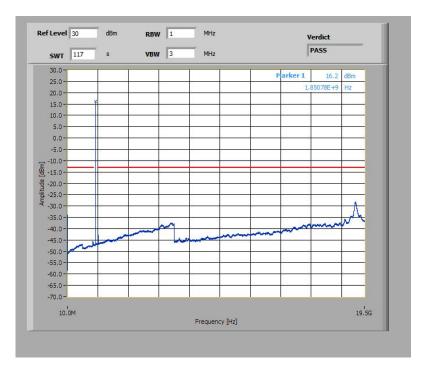
	Spurious Emission Level							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-



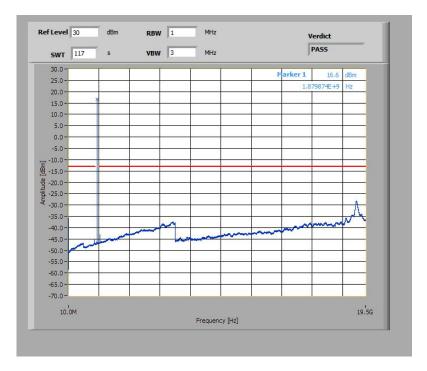
Plots: QPSK with 1.4 MHz channel bandwidth


Plot 1: Lowest Channel (10 MHz – 19.5 GHz)

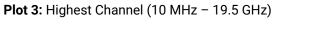
Plot 2: Middle Channel (10 MHz – 19.5 GHz)

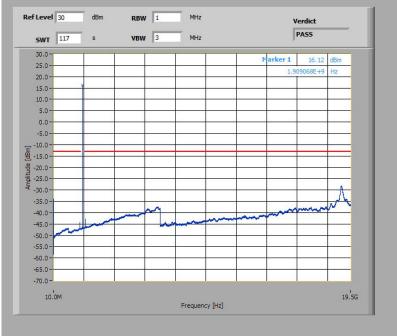


Plot 3: Highest Channel (10 MHz – 19.5 GHz)



Plots: 16-QAM with 1.4 MHz channel bandwidth


Plot 1: Lowest Channel (10 MHz – 19.5 GHz)



Plot 2: Middle Channel (10 MHz – 19.5 GHz)

14.2.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

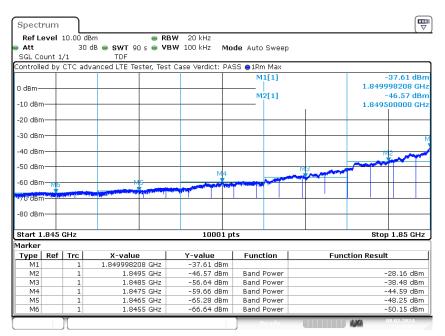
Measurement:

Measuremer	t parameters
Detector:	RMS
Sweep time:	180 sec.
Video bandwidth:	100 kHz
Resolution bandwidth:	20 kHz
Span:	1 MHz steps
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.4 setup A
Measurement uncertainty:	See chapter 9
Measurement procedure	FCC: § 2.1051 ISED: RSS-Gen, 6.13

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED
§ 24.238 (a) & (b)	RSS-133, 6.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.
-13	dBm
•	0810 if RBW < 1 % emission bandwidth: A here
	whereas: $DDW1 = V DDW2 = 7$


 \Box 10 log (RBW1/RBW2) = X dB; whereas: RBW1 = Y, RBW2 = Z

Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Date: 8.FEB.2024 13:28:02

Ref	evel	10.00 dB	m 🖷 R	BW 20 kHz			()
Att			18 🖷 SWT 90 s 🖷 V		de Auto Sweep		
SGL Co	ount 1		TDF				
			anced LTE Tester, Tes	t Case Verdict: PAS	65 🔵 1 Rm Max		
					M1[1]		-38.06 dBr
0 dBm-							1.910007808 GH
o abiii					M2[1]		-45.25 dBr
-10 dBm	η						1.910500000 GH
-20 dBm	ד-י						
-30 dBm	ŋ						
ļ							
40 dBr	<u>, ₩</u> ₽						
-50 dBm	111	- States	Л МЗ				
50 abri	·		THE REPORT OF THE PARTY OF	M4			
-60 dBm	η 					M5	M6
70 10				A CONTRACTOR OF			146 Altaniarayu Likuta Common ayara
-70 UBr							
-80 dBm	י—⊢						
Start 1	.91 G	Hz		10001 pt	s		Stop 1.915 GHz
4arker							
Type	Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1		1	1.910007808 GHz	-38.06 dBm			
M2		1	1.9105 GHz	-45.25 dBm	Band Power		-27.10 dBm
MЗ		1	1.9115 GHz	-53.85 dBm	Band Power		-36.87 dBm
M4		1	1.9125 GHz	-59.42 dBm	Band Power		-43.13 dBm
M5		1	1.9135 GHz	-63.84 dBm	Band Power		-47.40 dBm
M6		1	1.9145 GHz	-65.92 dBm	Band Power		-49.45 dBm

Plot 2: Highest channel – QPSK

Date: 8.FEB.2024 14:03:41

Plot 3: Lowest channel - 16-QAM

Spect				ppus colu			
	evel	10.00 dE		RBW 20 kHz			
Att			dB 👄 SWT 90 s 👄	VBW 100 kHz Mc	ode Auto Sweep)	
SGL Co			TDF				
ontrolle	ed by	CTC adv	/anced LTE Tester, 1	Test Case Verdict: PA			
					M1[1]		-39.42 dBi
) dBm—	_						1.849999744 GH
					M2[1]		-48.21 dB
10 dBm							1.849500000 GH
20 dBm							
-30 dBm							
40 dBm							
40 UBII	-						M2
50 dBm	∩—					MB and	
60 ID				M4			
-60 dBm	M6		M5		Sector Sector Sector		
уо авп			and the second division of the second divisio				
80 dBm	∩+-		-				
Start 1	.845	GHz		10001 p	its		Stop 1.85 GHz
larker							
Туре	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	1.849999744 GH				
M2		1	1.8495 GH		Band Power		-29.15 dBm
MЗ		1	1.8485 GH		Band Power		-39.19 dBm
M4		1	1.8475 GH		Band Power		-46.52 dBm
M5		1	1.8465 GH		Band Power		-50.22 dBm
M6		1	1.8455 GH	z -68.63 dBm	Band Power	1	-51.74 dBm

Date: 8.FEB.2024 13:37:42

Refle	ovel	10.00 dE	Am 🛋 🛛	BW 20 kHz			(
Att	5961		dB 🖷 SWT 90 s 🖷 V		de Auto Swee		
SGL Co	unt 1			BW 100 KH2 110	ue Auto Swee	,	
			vanced LTE Tester, Tes	t Caco Vordict: DAS	CC A1Dm Mov		
,on crone	su by	cic au	Valiceu LIL Testel, Tes	it case verticit. PAS	M1[1]		-38.18 dB
					MILI		-38.18 uB 1.910000768 GF
0 dBm—							-45.99 dB
-10 dBm					M2[1]		
-10 UBII						1	1.910500000 GH
-20 dBm							
	·						
-30 dBm	∩—						
40 dBm							
-50 dBm		NY YOUND	М3				
00 00.			The state of the second second	M4			
-60 dBm	۱					M5	M6
_				and the second s			M6
-70 dBm							
-80 dBm							
-00 0011	'						
Start 1	.91 G	Hz		10001 pt	ts		Stop 1.915 GHz
1arker							
Type	Ref	Trc	X-value	Y-value	Function	Euno	tion Result
M1		1	1.910000768 GHz	-38.18 dBm			
M2		1	1.9105 GHz	-45.99 dBm	Band Power		-27.19 dBm
MЗ		1	1.9115 GHz	-54.06 dBm	Band Power		-36.40 dBm
M4		1	1.9125 GHz	-59.81 dBm	Band Power		-42.65 dBm
M5		1	1.9135 GHz	-64.90 dBm	Band Power		-47.12 dBm
		1	1.9145 GHz	-66.89 dBm	Band Power		-49.45 dBm

Plot 4: Highest channel - 16-QAM

Date: 8.FEB.2024 14:13:21

14.2.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

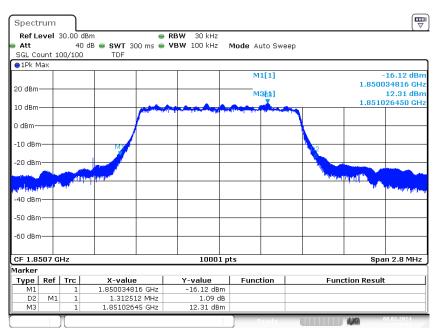
Measureme	ent parameters
Detector:	Peak
Sweep time:	180s
Video bandwidth:	100 kHz
Resolution bandwidth:	30 kHz
Span:	2 x nominal bandwidth
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.4 setup A
Measurement uncertainty:	See chapter 9
Measurement procedure	FCC: § 2.1049 ISED: RSS-Gen, 6.7

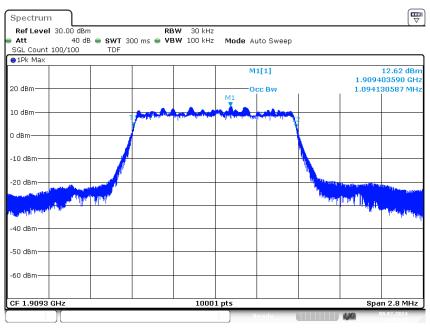
Limits:

FCC	ISED			
§ 2.1049	RSS-Gen, 6.7			
Reporting only				

Results:

Occupied Bandwidth – QPSK			
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)	
1850.7	1090	1313	
1880.0	1090	1281	
1909.3	1094	1303	

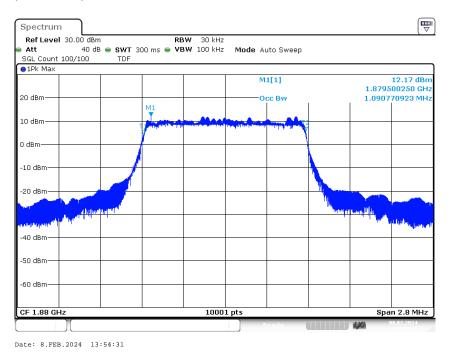

Occupied Bandwidth – 16-QAM			
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)	
1850.7	1089	1273	
1880.0	1091	1286	
1909.3	1090	1279	

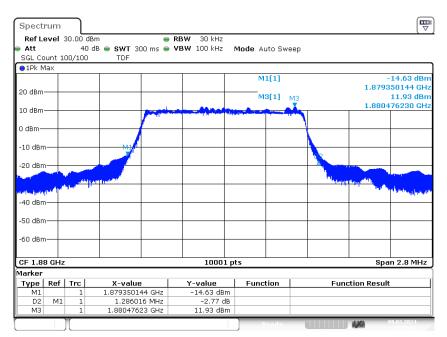

Plots: QPSK, worst case plots

Plot 1: low channel (-26 dBc BW)

Date: 8.FEB.2024 13:29:09

Plot 2: high channel (99% - OBW)


Date: 8.FEB.2024 14:04:15



Plots: 16-QAM, worst case plots

Plot 1: mid channel (99% - OBW)

Plot 2: mid channel (-26 dBc BW)

Date: 8.FEB.2024 13:55:05

14.3 Results LTE band 25

The EUT was set to transmit the maximum power.

14.3.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector: Sample			
AQT:	See plot		
Resolution bandwidth: 1 MHz			
Used equipment: See chapter 7.2 setup C & 7.4 setup A			
Measurement uncertainty:	See chapter 9		
Measurement procedure:	FCC: § 2.1046 ISED: RSS-Gen, 6.12		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED			
\$ 24.232(c)	RSS-133, 6.4 (referring to: SRSP-510, Issue 5)			
 (c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications. (d) In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. 	SRSP-510, 5.1: Mobile stations and hand-held portables are limited to 2 watts maximum e.i.r.p. RSS-133, 6.4: In addition, the transmitter's peak-to- average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.			
Power: 33 dBm EIRP				
PAPR: 13 dB				

Results:

Output Power (conducted)						
Bandwidth (MHz)	Channel No. / Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)
	0(047./	1 RB low	18,3	6,0	17,0	7,1
	26047 / 1850.7	1 RB high	18,0	6,1	17,0	7,1
	1050.7	100% RB	16,2	6,8	16,1	7,6
	06040 /	1 RB low	19,1	6,1	17,9	7,2
1.4	26340 / 1880.0	1 RB high	18,9	6,1	17,8	7,2
	1000.0	100% RB	16,9	6,9	17,0	7,6
	06600 /	1 RB low	19,4	6,1	18,4	7,2
	26683 / 1914.3	1 RB high	19,2	6,2	18,1	7,2
	1914.5	100% RB	17,3	7,0	17,4	7,7
		1 RB low	18,2	6,0	17,0	7,1
	26055 / 1851.5	1 RB high	18,0	6,1	17,0	7,2
	1031.5	100% RB	16,1	6,9	16,0	7,6
	06040 /	1 RB low	18,3	6,9	17,1	8,0
3	26340 / 1880.0	1 RB high	18,9	6,1	17,8	7,2
	1000.0	100% RB	16,9	6,9	16,3	8,3
	066757	1 RB low	19,3	6,2	18,3	7,2
	26675 / 1913.5	1 RB high	19,2	6,2	18,2	7,2
	1915.5	100% RB	17,2	7,1	17,3	7,7
		1 RB low	20,0	4,3	19,9	4,9
	26065 / 1852.5	1 RB high	19,8	4,4	19,8	5,0
	1052.5	100% RB	18,9	5,0	18,0	5,9
		1 RB low	20,9	4,3	20,8	4,9
5	26340 / 1880.0	1 RB high	20,6	4,4	20,5	5,0
	1000.0	100% RB	19,6	5,0	18,6	6,1
		1 RB low	21,6	4,3	21,7	4,7
	26665 / 1912.5	1 RB high	21,3	4,3	21,5	4,8
1912.5	100% RB	20,2	5,1	19,2	6,0	

26090 / 1855.0	06000 /	1 RB low	19,9	4,3	19,9	4,9
		1 RB high	19,8	4,4	19,8	4,9
	100% RB	18,9	5,0	19,0	5,7	
	06040 /	1 RB low	20,7	4,3	20,6	4,9
10	26340 / 1880.0	1 RB high	20,5	4,4	20,5	5,0
	1000.0	100% RB	19,7	5,0	19,6	5,8
	066404	1 RB low	21,6	4,3	21,5	4,7
	26640 / 1910.0	1 RB high	21,1	4,3	21,4	4,8
	1910.0	100% RB	20,1	5,1	20,3	5,7
	00115 /	1 RB low	19,7	4,3	19,7	4,9
	26115 / 1857.5	1 RB high	19,6	4,4	19,6	4,9
	1657.5	100% RB	19,8	4,6	19,9	5,1
	06040 /	1 RB low	20,5	4,3	20,6	4,8
15	26340 / 1880.0	1 RB high	20,5	4,4	20,4	5,0
	1000.0	100% RB	20,4	4,7	20,5	5,3
	0000	1 RB low	21,2	4,3	21,4	4,7
	26615 / 1907.5	1 RB high	21,0	4,3	21,1	4,8
1907.5	1907.5	100% RB	20,9	4,8	20,9	5,3
	06140.4	1 RB low	19,4	4,3	19,4	4,8
	26140 / 1860.0	1 RB high	19,3	4,4	19,3	5,0
	1800.0	100% RB	19,4	4,7	19,5	5,2
	06040 /	1 RB low	20,4	4,3	20,2	4,8
20	26340 / 1880.0	1 RB high	20,2	4,4	20,1	4,9
	1000.0	100% RB	20,2	4,7	20,1	5,3
	06500 /	1 RB low	21,2	4,3	21,3	4,7
	26590 /	1 RB high	20,9	4,3	21,1	4,8
1905.0	100% RB	20,8	4,8	20,9	5,2	

Output Power (EIRP)					
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM		
	1850.7	17,5	16,2		
1.4	1880.0	17,6	16,4		
	1914.3	17,5	16,5		
	1851.5	17,6	16,5		
3	1880.0	17,4	16,3		
	1913.5	17,4	16,4		
	1852.5	19,2	19,1		
5	1880.0	19,4	19,3		
	1912.5	19,7	19,8		
	1855.0	19,1	19,1		
10	1880.0	19,2	19,1		
	1910.0	19,7	19,6		
	1857.5	19,0	19,1		
15	1880.0	19,0	19,1		
	1907.5	19,3	19,5		
	1860.0	18,6	18,7		
20	1880.0	18,9	18,7		
	1905.0	19,3	19,4		

The radiated output power is measured in the mode with the highest conducted output power.

14.3.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMW500 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMW500 and in a simulated call on channel 9400 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/-0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMW500			
Resolution bandwidth:	Measured with CMW500			
Span:				
Trace-Mode:				
Used equipment:	See chapter 7.4 setup A			
Measurement uncertainty:	See chapter 9			
Measurement procedure:	FCC: § 2.1055 ISED: RSS-Gen, 6.11			

Limits:

FCC	ISED		
§ 24.235	RSS-133, 6.3		
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.The carrier frequency shall not depart from the reference frequency, in excess of ±2.5 ppm for mobile stations and ±1.0 ppm for base stations			
± 2.5 ppm (ISED only)			

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
4.1	-71	-0.04
3.7	-65	-0.04
2.5	-67	-0.04

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-26	-0.01
-20	-36	-0.02
-10	-26	-0.01
± 0	-41	-0.02
10	-48	-0.03
20	-71	-0.04
30	-26	-0.01
40	-14	-0.01
50	-38	-0.02

14.3.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 25.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	2 sec.		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A; 7.2 setup A, B; 7.3 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure	FCC: § 2.1053 ISED: RSS-Gen, 6.13		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

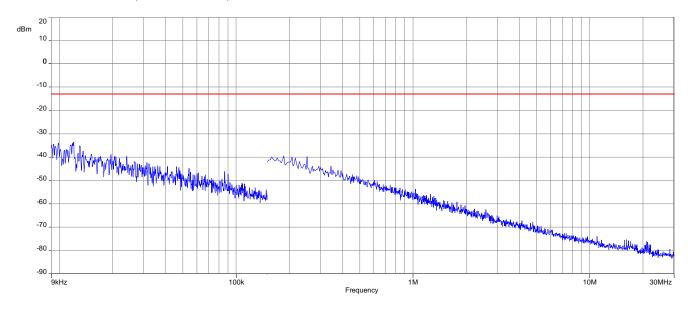
FCC	ISED			
§ 24.238 (a) & (b)	RSS-133, 6.5			
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.			
-13 dBm				

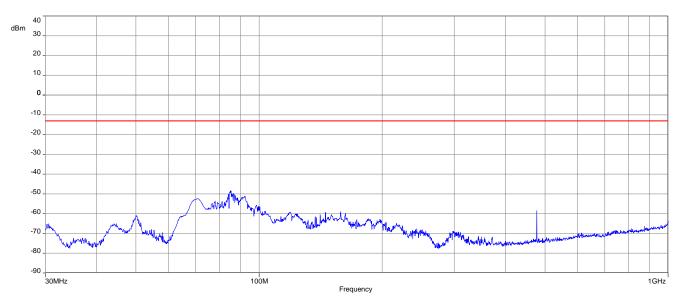
Results:

<u>QPSK:</u>

Spurious Emission Level						
Lowest channel Middle chann			hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
-/-		All detected emissions are more than 20 dB below the limit.		-/-	-	
-/-	-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	-/-	

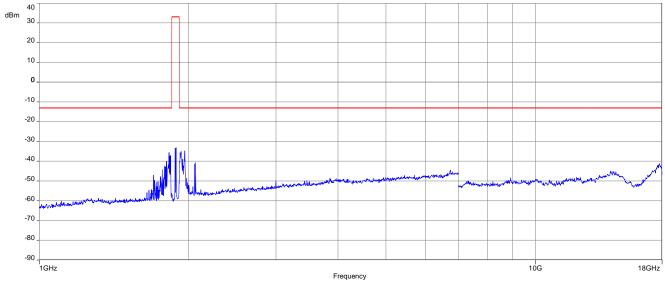
<u> 16-QAM:</u>

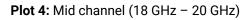

Spurious Emission Level								
Lowest channel		Middle o	hannel	Highest channel				
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]			
-/-		All detected emis than 20 dB be		-/-				
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			

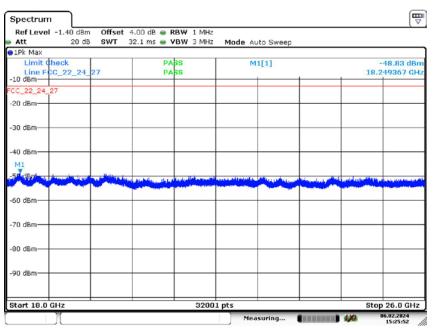


<u>QPSK</u>

Plot 1: Mid channel (9 kHz - 30 MHz)

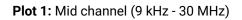

Plot 2: Mid channel (30 MHz - 1 GHz)

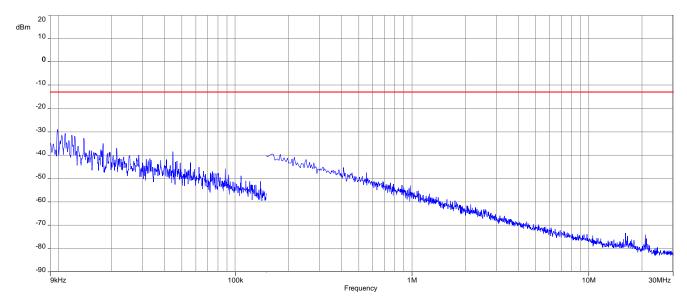




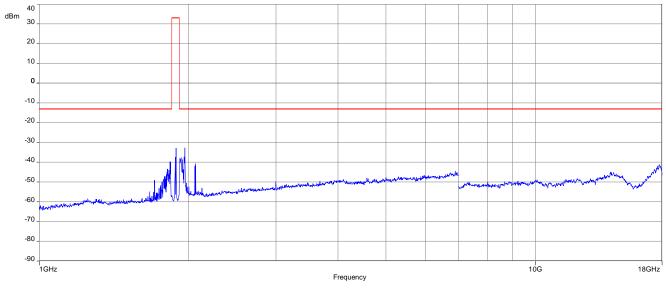
Plot 3: Mid channel (1 GHz – 18 GHz)

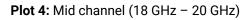
Carrier notched with 1.9 GHz rejection filter

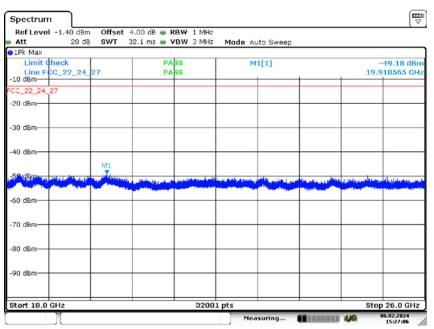



Date: 6.FEB.2024 15:25:52

<u>16-QAM</u>


Plot 2: Mid channel (30 MHz - 1 GHz)





Plot 3: Mid channel (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Date: 6.FEB.2024 15:27:06

14.3.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From § 2.1057 & RSS-Gen, 6.13.2 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measuremer	Measurement parameters					
Detector:	Peak					
Sweep time:	Auto					
Video bandwidth:	300 kHz					
Resolution bandwidth:	100 kHz					
Span:	30 MHz – 19.5 GHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 7.4 setup A					
Measurement uncertainty:	see chapter 9					
Measurement procedure	FCC: § 2.1051 ISED: RSS-Gen, 6.13					

Test report no.: 1-6998_23-02-08_TR1-R1

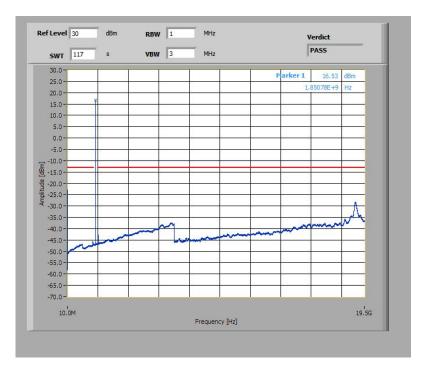
Limits:

FCC	IC
§ 24.238 (a) & (b)	RSS-133, 6.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.
-13	dBm

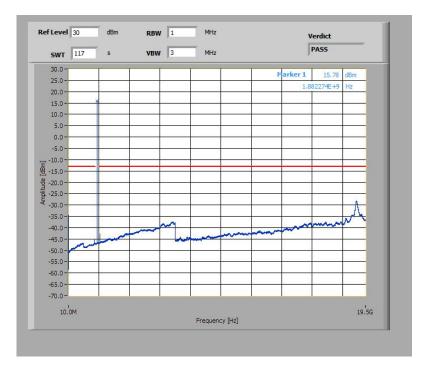
Results: for 1.4 MHz channel bandwidth

<u>QPSK:</u>

	Spurious Emission Level							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-


<u> 16-QAM:</u>

	Spurious Emission Level							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-



Plots: QPSK with 1.4 MHz channel bandwidth

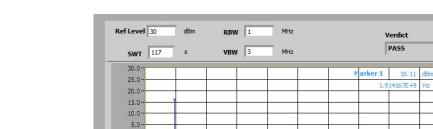
Plot 1: Lowest Channel (10 MHz – 19.5 GHz)

Plot 2: Middle Channel (10 MHz – 19.5 GHz)

0.0--5.0--10.0-프 -10.0 편 -15.0 --20.0 --25.0 --30.0 --30.0--35.0--40.0-

-45.0n

-50.0--55.0--60.0--65.0--70.0-10.0M

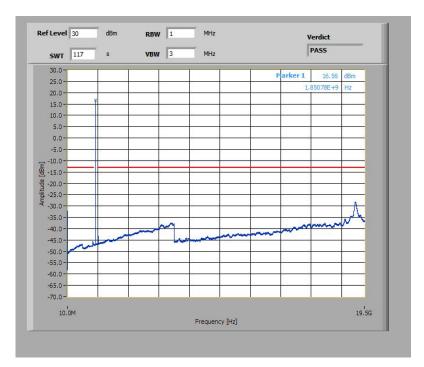


Verdict PASS

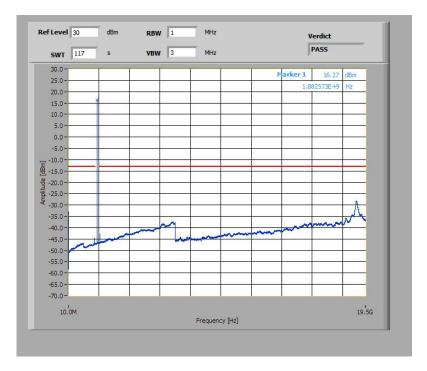
19.5G

20

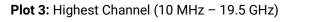
Frequency [Hz]

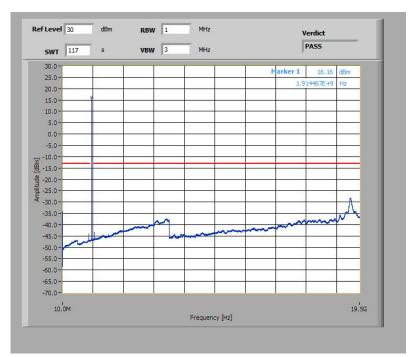


Plot 3: Highest Channel (10 MHz – 19.5 GHz)



Plots: 16-QAM with 1.4 MHz channel bandwidth


Plot 1: Lowest Channel (10 MHz – 19.5 GHz)



Plot 2: Middle Channel (10 MHz – 19.5 GHz)

14.3.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measuremer	t parameters
Detector:	RMS
Sweep time:	180 sec.
Video bandwidth:	100 kHz
Resolution bandwidth:	20 kHz
Span:	1 MHz steps
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.4 setup A
Measurement uncertainty:	See chapter 9
Measurement procedure	FCC: § 2.1051 ISED: RSS-Gen, 6.13

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED
§ 24.238 (a) & (b)	RSS-133, 6.5
 (a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log(P) (watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.
-13	dBm
•	0810 if RBW < 1 % emission bandwidth: A here
	whereas: $DDW1 = V DDW2 = 7$

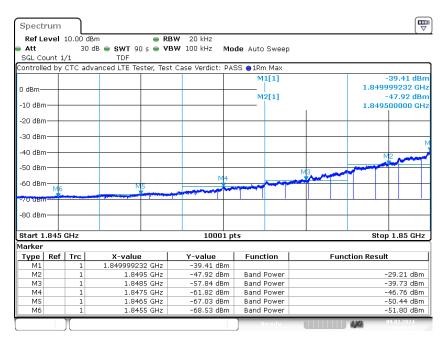
 \Box 10 log (RBW1/RBW2) = X dB; whereas: RBW1 = Y, RBW2 = Z

Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Spect							(4
	evel	10.00 de					
Att			dB 👄 SWT 90 s 👄 V	BW 100 kHz Mo	de Auto Sweep		
SGL Co			TDF				
ontrolle	ed by	CTC adv	anced LTE Tester, Tes	t Case Verdict: PA	-		
					M1[1]		-38.00 dBr
) dBm—							1.849996288 GH
					M2[1]		-46.63 dBr
10 dBm						1	1.849500000 GH
20 dBm							
30 dBm							
40 dBm							W2
50 dBm							
				M4		N S CONTRACT	m
60 dBm	M6		M5	and the second sec	Providence of the local division of the loca		
70 den			And the survey of the survey o		<u>'</u>		
, o abii	·						
80 dBm							
Start 1	.845	GHz		10001 p	ts		Stop 1.85 GHz
arker							
Туре	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	1.849996288 GHz	-38.00 dBm			
M2		1	1.8495 GHz	-46.63 dBm	Band Power		-28.23 dBm
M3		1	1.8485 GHz	-57.38 dBm	Band Power		-39.05 dBm
M4 M5		1	1.8475 GHz 1.8465 GHz	-60.75 dBm -65.61 dBm	Band Power Band Power		-45.13 dBm -48.67 dBm
M6		1	1.8465 GHz	-67.22 dBm	Band Power		-48.67 UBM -50.41 dBm

Date: 9.FEB.2024 08:36:29


Refli	ovel	10.00 d	Bm 🖷 RI	BW 20 kHz			(
Att	5961		dB 🖷 SWT 90 s 🖷 VI		de Auto Sweep		
SGL Co	unt 1		TDF		ae Auto Sweep		
			vanced LTE Tester, Tes	t Case Verdict: PAS	SS 🗛 1 Rm Max		
Sontrollo	<u>, a b</u> ,	010 44			M1[1]		-37.93 dB
o							1.915005312 GF
0 dBm—					M2[1]		-45.67 dB
-10 dBm							1.915500000 GF
	·					1	
-20 dBm	∩—						
1 ^{30 dBm}	·						
40.dBr							
	A	The second second					
-50 dBm) 						
						M5	
-60 dBm					Children Harrison		MO
-70 dBm				' '	a second to should be the		فاستلج وقدوات بالربيع كالتلبع المالين التراجي وأو
	·						MG Iter Jalaita in parto ta Marine Instru
-80 dBm	∩—						
Start 1	.915	GHz	· · ·	10001 pt	s		Stop 1.92 GHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	1.915005312 GHz	-37.93 dBm			
M2		1	1.9155 GHz	-45.67 dBm	Band Power		-26.87 dBm
MЗ		1	1.9165 GHz	-58.40 dBm	Band Power		-36.63 dBm
M4		1	1.9175 GHz	-58.67 dBm	Band Power		-42.70 dBm
M5		1	1.9185 GHz	-63.40 dBm	Band Power		-47.03 dBm
M6		1	1.9195 GHz	-65.69 dBm	Band Power		-49.16 dBm

Plot 2: Highest channel – QPSK

Date: 9.FEB.2024 09:12:03

Plot 3: Lowest channel - 16-QAM

Date: 9.FEB.2024 08:46:07

Refle	avel	10.00 d	Bm 🖷 R	BW 20 kHz			
Att			dB 🖷 SWT 90 s 🖷 V		de Auto Sweep		
SGL Co	unt 1		TDF		ab Hato Shoop		
		-	vanced LTE Tester, Tes	t Case Verdict: PAS	SS 😐 1 Rm Max		
					M1[1]		-38.23 dB
0 dBm—							1.915003264 GF
o ubiii-					M2[1]		-45.19 dB
-10 dBm							1.915500000 GF
-20 dBm	1						
-30 dBm							
1							
AQ dBr	<u>_M2</u>						
-50 dBm	1.1	The Party of the P	МЗ				
-JU UBII				M4			
-60 dBm				HIP CONCEPTION AND A DESCRIPTION OF A DE		<u>M</u> 5	
				a second the second	IN THE REPORT OF THE REPORT OF THE PARTY OF		
-70 dBm						· · ·	
-80 dBm							
Start 1	.915	GHz		10001 pt	ts		Stop 1.92 GH
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1		1	1.915003264 GHz	-38.23 dBm			
M2		1	1.9155 GHz	-45.19 dBm	Band Power		-27.01 dBm
MЗ		1	1.9165 GHz	-53.37 dBm	Band Power		-36.25 dBm
M4		1	1.9175 GHz	-59.22 dBm	Band Power		-42.49 dBm
M5 M6		1	1.9185 GHz	-63.84 dBm -68.56 dBm	Band Power Band Power		-46.96 dBm
IVID		1	1.9195 GHz	-08.56 dBm	Bariu Power		-49.35 dBm

Plot 4: Highest channel - 16-QAM

Date: 9.FEB.2024 09:21:43

14.3.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

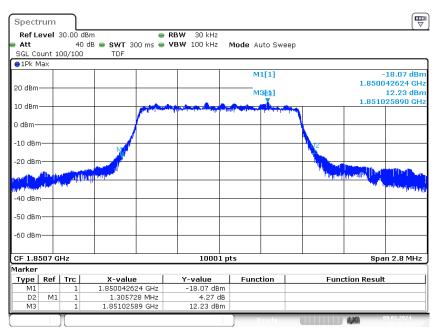
Measureme	Measurement parameters					
Detector:	Peak					
Sweep time:	180s					
Video bandwidth:	100 kHz					
Resolution bandwidth:	30 kHz					
Span:	2 x nominal bandwidth					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 7.4 setup A					
Measurement uncertainty:	See chapter 9					
Measurement procedure	FCC: § 2.1049 ISED: RSS-Gen, 6.7					

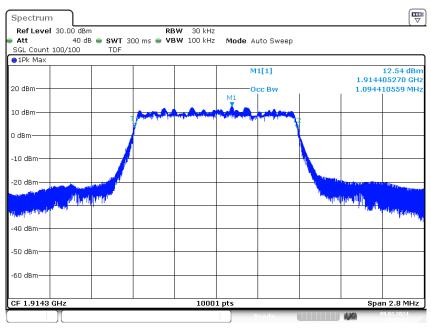
Limits:

FCC	ISED			
§ 2.1049	RSS-Gen, 6.7			
Reporting only				

Results:

Occupied Bandwidth – QPSK										
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)								
1850.7	1091	1306								
1880.0	1089	1267								
1909.3	1094	1302								

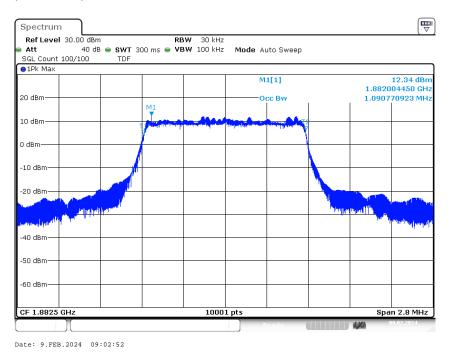

Occupied Bandwidth – 16-QAM										
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)								
1850.7	1089	1272								
1880.0	1091	1288								
1909.3	1090	1298								

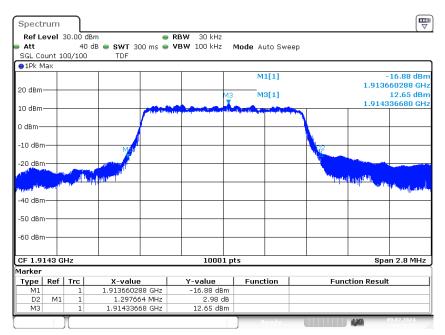

Plots: QPSK, worst case plots

Plot 1: low channel (-26 dBc BW)

Date: 9.FEB.2024 08:37:34

Plot 2: high channel (99% - OBW)


Date: 9.FEB.2024 09:12:37



Plots: 16-QAM, worst case plots

Plot 1: mid channel (99% - OBW)

Plot 2: high channel (-26 dBc BW)

Date: 9.FEB.2024 09:22:51

15 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC: CFR Part 2 & Part 27 & Part 90 ISED: RSS-Gen, Issue 5 RSS-130, Issue 2 (LTE Bands 12, 13, 85) RSS-139, Issue 4 (LTE Band 4, 66)	See table!	2024-09-04	-/-

15.1 Part 27/RSS-139: LTE band 4

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme	\boxtimes				-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
	I				11		<u> </u>

15.2 Part 27/RSS-130: LTE band 12

temperature conditions	power source voltages	С	NC	NA	NP	Remark
Nominal	Nominal	\boxtimes				-/-
Extreme	Extreme	\boxtimes				-/-
Nominal	Nominal	\boxtimes				-/-
Nominal	Nominal	\boxtimes				-/-
Nominal	Nominal	\boxtimes				-/-
Nominal	Nominal	\boxtimes				-/-
	conditions Nominal Extreme Nominal Nominal Nominal	conditionsvoltagesNominalNominalExtremeExtremeNominalNominalNominalNominalNominalNominal	conditionsvoltagesCNominalNominalIXExtremeExtremeIXNominalNominalIXNominalNominalIXNominalNominalIXNominalNominalIX	conditionsvoltagesCNCNominalNominalIIExtremeExtremeIINominalNominalIINominalNominalIINominalNominalIINominalNominalII	conditionsvoltagesCNCNANominalNominalIIIExtremeExtremeIIINominalNominalIIINominalNominalIIINominalNominalIIINominalNominalIIINominalIIIINominalIIIINominalII <td>conditionsvoltagesCNCNANPNominalNominalIIIIExtremeIIIIINominalNominalIIIINominalNominalIIIINominalNominalIIIINominalNominalIIIINominalIIIIINominalIIIII</td>	conditionsvoltagesCNCNANPNominalNominalIIIIExtremeIIIIINominalNominalIIIINominalNominalIIIINominalNominalIIIINominalNominalIIIINominalIIIIINominalIIIII

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

15.3 Part 27/RSS-130: LTE band 13

Test Case	temperature conditions	power source voltages	с	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme	\boxtimes				-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

C Compliant NC Not compliant NA Not applicable	NP	Not performed
--	----	---------------

15.4 Part 27: LTE band 26b

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

15.5 Part 27/RSS-139: LTE band 66

Test Case	temperature conditions	power source voltages	с	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Extreme	Extreme					-/-
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

15.6 Part 27/RSS-133: LTE band 85

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power	Nominal	Nominal	X				-/-
Frequency Stability	Extreme	Extreme	\boxtimes				-/-
Spurious Emissions Radiated	Nominal	Nominal	X				-/-
Spurious Emissions Conducted	Nominal	Nominal	X				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal	X				-/-

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

16 **RF** measurements

16.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

16.2 Results LTE band 4

The EUT was set to transmit the maximum power.

16.2.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters					
Detector:	Sample				
AQT:	See plot				
Resolution bandwidth:	1 MHz				
Used equipment:	See chapter 7.4 setup A				
Measurement uncertainty:	See chapter 9				
Measurement procedure	FCC: § 2.1046 ISED: RSS-Gen, 6.12				

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED				
§ 27.50(d)(4) & (5)	RSS-139, 6.5				
 (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. (5) In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. 	The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt. In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.				
Power: 33 dBm EIRP PAPR: 13 dB					

Results:

	Output Power (conducted)									
Bandwidth (MHz)	Channel No. / Frequency (MHz)	Resource block Output Power Average		Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Ver Average				
	19957 /	1 RB low	17,9	5,9	16,6	7,0				
	1710.7	1 RB high	17,7	6,0	16,6	7,0				
	1710.7	100% RB	15,9	6,7	15,9	7,4				
	20175 /	1 RB low	18,0	5,9	16,8	7,1				
1.4	1732.5	1 RB high	17,8	6,0	16,6	7,2				
	1702.0	100% RB	15,9	6,7	16,0	7,4				
	20202 /	1 RB low	18,0	6,0	16,8	7,0				
	20393 / 1754.3	1 RB high	17,8	6,1	16,7	7,1				
	1734.3	100% RB	15,7	7,0	15,8	7,5				
	19965 / 1711.5	1 RB low	17,8	5,9	16,6	7,0				
		1 RB high	17,0	6,8	15,8	7,8				
		100% RB	15,8	6,7	15,9	7,4				
	20175 / 1732.5 20385 / 1753.5	1 RB low	17,9	6,0	16,8	7,1				
3		1 RB high	17,8	6,1	16,6	7,2				
		100% RB	15,9	6,8	15,1	8,2				
		1 RB low	18,0	6,0	16,8	7,1				
		1 RB high	17,9	6,1	16,7	7,1				
		100% RB	15,9	6,9	15,9	7,5				
	19975 / 1712.5	1 RB low	19,8	4,1	19,6	4,7				
		1 RB high	19,6	4,2	19,4	4,8				
		100% RB	18,7	4,8	17,7	5,8				
	20175 / 1732.5	1 RB low	19,7	4,2	19,4	4,8				
5		1 RB high	19,4	4,3	19,2	4,9				
		100% RB	18,6	4,9	17,3	6,0				
	00075 /	1 RB low	19,9	4,2	19,7	4,8				
	20375 / 1752.5	1 RB high	19,8	4,3	19,6	4,8				
	1752.5	100% RB	18,7	5,0	17,6	5,9				

	20000 / 1715.0	1 RB low	19,7	4,2	19,5	4,7
		1 RB high	19,4	4,3	19,5	4,8
	1715.0	100% RB	18,6	4,8	18,8	5,5
	00175 /	1 RB low	19,4	4,3	19,3	4,8
10	20175 / 1732.5	1 RB high	19,4	4,3	19,1	4,9
	1702.0	100% RB	18,6	4,9	18,6	5,6
	00050 /	1 RB low	19,8	4,2	19,6	4,7
	20350 / 1750.0	1 RB high	19,5	4,3	19,4	4,8
	1750.0	100% RB	18,4	5,0	18,8	5,6
	00005 /	1 RB low	19,4	4,2	19,4	4,7
	20025 / 1717.5	1 RB high	19,3	4,3	19,1	4,9
	1717.5	100% RB	19,5	4,5	19,5	5,0
	20175 / 1732.5	1 RB low	19,5	4,2	19,2	4,8
15		1 RB high	19,3	4,3	19,2	4,9
		100% RB	19,3	4,6	19,3	5,2
	00005 /	1 RB low	19,9	4,2	19,6	4,7
	20325 / 1747.5	1 RB high	19,4	4,3	19,4	4,8
	1747.5	100% RB	19,4	4,7	19,5	5,2
	20050 / 1720.0	1 RB low	19,2	4,1	19,1	4,7
		1 RB high	19,1	4,3	19,0	4,8
	1720.0	100% RB	19,1	4,5	19,2	5,0
	00175 /	1 RB low	19,2	4,2	18,8	4,8
20	20175 / 1732.5	1 RB high	19,0	4,3	18,8	4,9
	1752.5	100% RB	19,0	4,6	19,0	5,2
	00000 /	1 RB low	19,6	4,2	19,4	4,8
	20300 / 1745.0	1 RB high	19,3	4,3	18,9	5,0
	1/45.0	100% RB	19,2	4,7	19,0	5,3

Output Power (EIRP)				
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	
	1710.7	18,0	16,7	
1.4	1732.5	18,1	16,9	
	1754.3	18,1	16,9	
	1711.5	18,1	16,9	
3	1732.5	18,0	16,9	
	1753.5	18,1	16,9	
	1712.5	19,9	19,7	
5	1732.5	19,8	19,5	
	1752.5	20,0	19,8	
	1715.0	19,8	19,6	
10	1732.5	19,5	19,4	
	1750.0	19,9	19,7	
	1717.5	19,6	19,6	
15	1732.5	19,6	19,4	
	1747.5	20,0	19,7	
	1720.0	19,3	19,3	
20	1732.5	19,3	19,1	
	1745.0	19,7	19,5	

The radiated output power is measured in the mode with the highest conducted output power.

16.2.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMW500 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMW500 and in a simulated call on channel 1412 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/-0.5°C during the measurement procedure.

This measurement was performed with the highest channel bandwidth supported from the EUT on the middle channel

Measurement:

Measurement parameters			
Detector:			
Sweep time:			
Video bandwidth:	Measured with CMW500		
Resolution bandwidth:	Measured with CMW500		
Span:			
Trace-Mode:			
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure	FCC: § 2.1055 ISED: RSS-Gen, 6.11		

Limits:

FCC	ISED
§ 27.54	RSS-139, 6.4
The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.	The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

Results:

FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
4.1	-42	-0.02
3.7	-39	-0.02
2.5	-34	-0.02

FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-32	-0.02
-20	-27	-0.02
-10	-11	-0.01
± 0	-16	-0.01
10	-23	-0.01
20	-42	-0.02
30	-34	-0.02
40	14	0.01
50	12	0.01

16.2.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1750 MHz. Measurement made up to 18 GHz. The resolution bandwidth is set as outlined in Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 4.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	2 sec.		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A; 7.2 setup A, B		
Measurement uncertainty:	See chapter 9		
Measurement procedure	FCC: § 2.1053 ISED: RSS-Gen, 6.13		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

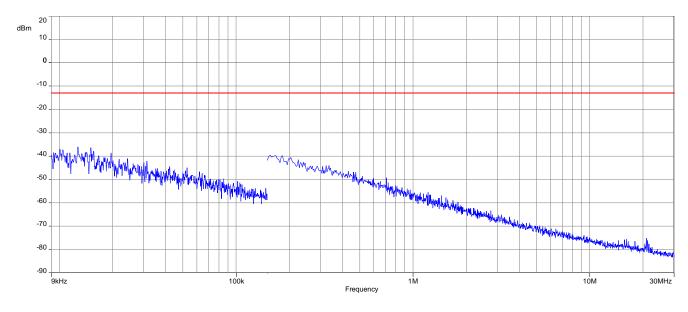
FCC	ISED			
§ 27.53(h)(1) & (3)	RSS-139, 6.6			
 (1) Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. (3) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	 i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 (P) (watts) dB. ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 (P) (watts) dB. 			
-13 dBm				

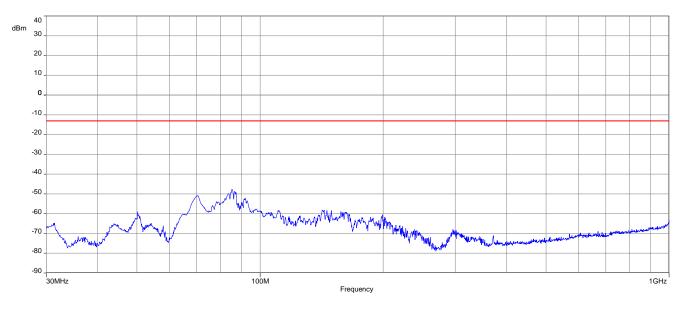
Results:

<u>QPSK</u>

Spurious Emission Level					
Lowest channel		Middle channel		Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions [dBm]		Spurious emissions	Level [dBm]
-/-		All detected emissions are more than 20 dB below the limit.		-/-	
-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-

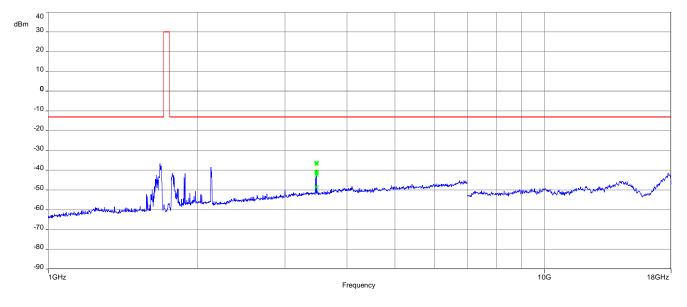
<u>16-QAM</u>


Spurious Emission Level					
Lowest channel		Middle channel		Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions [dBm]		Spurious emissions	Level [dBm]
-/-		All detected emissions are more than 20 dB below the limit.		-/-	
-/-	-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-	-/-

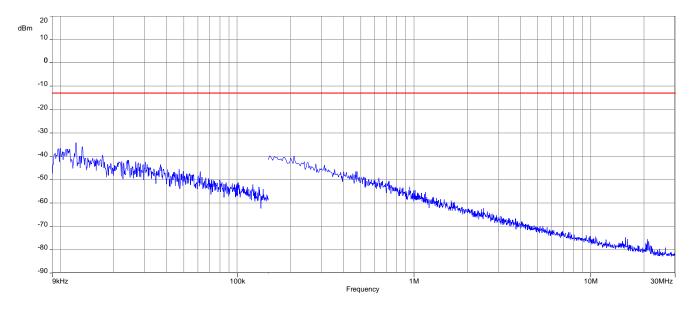


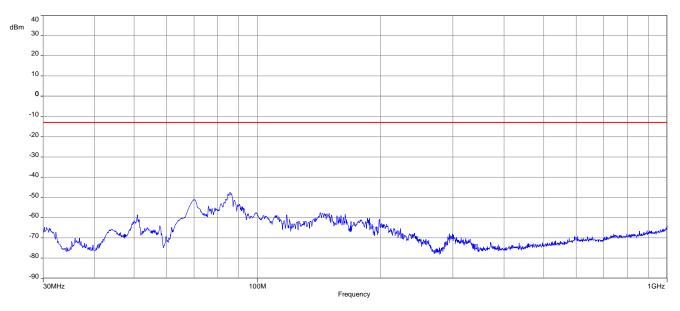
<u>QPSK</u>

Plot 1: Middle channel, up to 30 MHz


Plot 2: Middle channel, 30 MHz to 1GHz

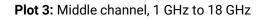
Plot 3: Middle channel, 1 GHz to 18GHz

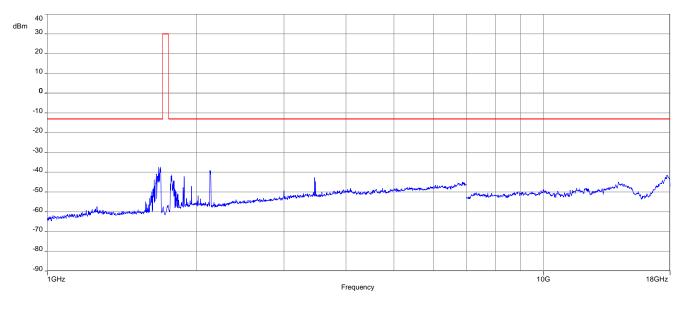




<u>16-QAM</u>

Plot 1: Middle channel, up to 30 MHz




Plot 2: Middle channel, 30 MHz to 1 GHz

16.2.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From § 2.1057 & RSS-Gen, 6.13.2 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

For the measurement the lowest, middle and highest channel bandwidth was used. If spurious were found the other bandwidths were measured, too.

Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	300 kHz		
Resolution bandwidth:	100 kHz		
Span:	10 MHz – 18 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		
Measurement procedure	FCC: § 2.1051 ISED: RSS-Gen, 6.13		

Test report no.: 1-6998_23-02-08_TR1-R1

Limits:

FCC	ISED			
§ 27.53(h)(1) & (3)	RSS-139, 6.6			
 (1) Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. (3) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. 	 i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 (P) (watts) dB. ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 (P) (watts) dB. 			
-13 dBm				

Results: for 1.4 MHz channel bandwidth

<u>QPSK</u>

Spurious Emission Level								
Lowest channel		Middle channel		Highest channel				
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			

<u>16-QAM</u>

Spurious Emission Level								
Lowest channel		Middle channel		Highest channel				
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			
-/-	-/-	-/-	-/-	-/-	-/-			