

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R01-2100009

FCC REPORT

Applicant: INFINIX MOBILITY LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35

SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: X693

Trade mark: Infinix

FCC ID: 2AIZN-X693

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 08 Jan., 2021

Date of Test: 09 Jan., to 20 Jan., 2021

Date of report issued: 21 Jan., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	21 Jan., 2021	Original

	7	11/00		
Tested by:	Janet	vvei	Date:	21 Jan., 2021

Test Engineer

Winner Thang
Project Engineer Reviewed by: 21 Jan., 2021 Date:

Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	TI	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	6
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	Additions to, deviations, or exclusions from the method	
	5.9	LABORATORY FACILITY	
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	TF	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
R	FI	LIT CONSTRUCTIONAL DETAILS	12

Page 3 of 18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	INFINIX MOBILITY LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	X693
Power supply:	Rechargeable Li-ion polymer Battery DC3.85V-4900mAh
AC adapter:	Model: CQ-18LX
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V - 9.0V === 2.0A, 9.0V - 12.0V === 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode and test samples plans

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Test Samples Plans:

Samples Number	Used for Test Items
1#	Conducted Emission
1#	Radiated Emission
1#	EUT constructional details

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R01-2100009

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)	

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type Description		Length	From	То
Detached USB Cable	Shielding	1.02m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.24m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

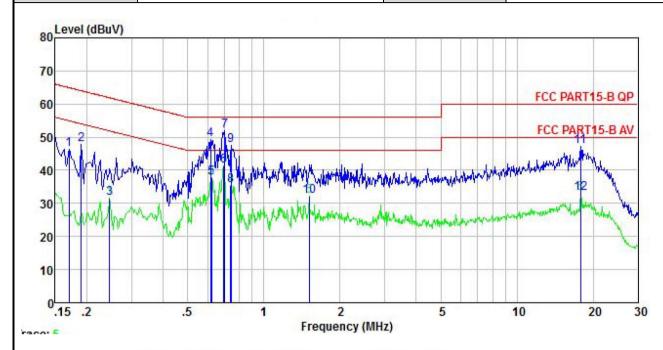
Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:									
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021				
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021				
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021				
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021				
Cable	HP	10503A	N/A	03-05-2020	03-04-2021				
EMI Test Software	AUDIX	E3	Version: 6.110919b						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

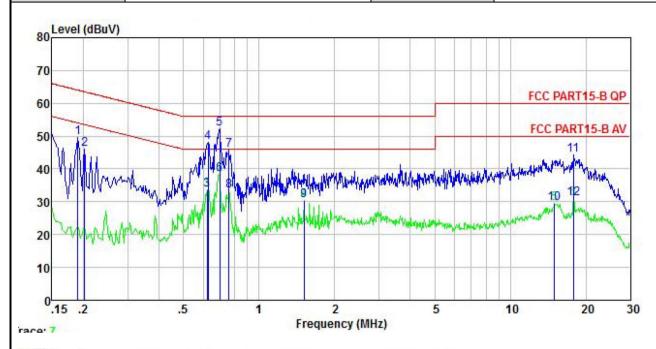
Test results and Measurement Data

6.1 Conducted Emission


Test Requirement:	FCC Part 15 B Section 15.107						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)		(dBµV)				
	, , , ,	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5 0.5-30	56 60	46 50				
	* Decreases with the logarithm		50				
Test setup:	Reference Plane	or the frequency.					
Test procedure		EMI Receiver					
I est procedure	impedance stabilization network coupling impedance for the notation. The peripheral devices are a LISN that provides a 500hm/termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4(later).	rork(L.I.S.N.). The provineasuring equipment. Iso connected to the mission of the block diagram of the checked for maximum distance the interface call.	ride a 50ohm/50uH rain power through a nce with 50ohm rhe test setup and conducted on, the relative bles must be changed				
Test Instruments:	Refer to section 5.11 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data:

Product name:	Mobile Phone	Product model:	X693
Test by:	Janet	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Kead Level	Factor	Factor	Loss	Level	Limit	Limit	Remark
<u>1010</u>	MHz	dBu∜	<u>db</u>	<u>ab</u>	<u>ab</u>	—dBu⊽	dBu∀	<u>ab</u>	
1	0.170	36.21	-0.58	-0.10	10.77	46.30	64.94	-18.64	QP
2	0.190	37.91	-0.59	-0.14	10.76	47.94	64.02	-16.08	QP
3	0.246	21.60	-0.57	-0.21	10.75	31.57	51.91	-20.34	Average
4	0.617	39.31	-0.49	-0.38	10.77	49.21	56.00	-6.79	QP
2 3 4 5 6	0.621	28.01	-0.49	-0.38	10.77	37.91	46.00	-8.09	Average
6	0.694	31.50	-0.53	-0.40	10.77	41.34	46.00	-4.66	Average
7 8 9	0.701	42.04	-0.53	-0.40	10.77	51.88	56.00	-4.12	QP
8	0.739	25.35	-0.54	-0.28	10.79	35.32	46.00	-10.68	Average
9	0.743	37.46	-0.54	-0.26	10.79	47.45	56.00	-8.55	QP
10	1.511	21.75	-0.55	-0.01	10.92	32.11	46.00	-13.89	Average
11	17.849	35.01	-0.80	1.98	10.92	47.11	60.00	-12.89	QP
12	17.849	21.02	-0.80	1.98	10.92	33.12	50.00	-16.88	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	X693
Test by:	Janet	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u></u>	MHz	dBu∀	<u>ab</u>	<u>db</u>	<u>ab</u>	—dBu∀	—dBu∀	<u>ab</u>	
1	0.190	39.40	-0.67	0.00	10.76	49.49	64.02	-14.53	QP
2	0.202	35.83	-0.67	0.00	10.76	45.92	63.54	-17.62	QP
3	0.621	23.49	-0.64	0.04	10.77	33.66	46.00	-12.34	Average
4	0.627	37.87	-0.64	0.04	10.77	48.04	56.00	-7.96	QP
1 2 3 4 5 6 7 8 9	0.697	42.13	-0.64	0.04	10.77	52.30	56.00	-3.70	QP
6	0.697	28.16	-0.64	0.04	10.77	38.33	46.00	-7.67	Average
7	0.759	35.68	-0.65	0.05	10.80	45.88	56.00	-10.12	QP
8	0.759	23.18	-0.65	0.05	10.80	33.38	46.00	-12.62	Average
9	1.511	20.01	-0.70	0.13	10.92	30.36	46.00	-15.64	Average
10	14.986	16.21	-0.81	3.09	10.90	29.39	50.00	-20.61	Average
11	17.849	32.96	-1.09	1.39	10.92	44.18	60.00	-15.82	QP
12	17.849	19.67	-1.09	1.39	10.92	30.89	50.00	-19.11	Average

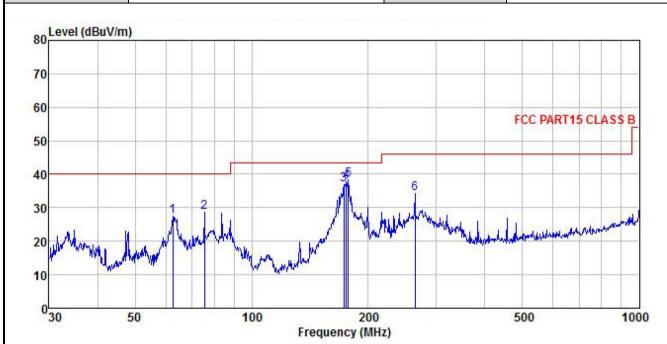
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Padiated Emission

6.2 Radiated Emission			10			
Test Requirement:	FCC Part 15 B Se)9			
Test Frequency Range:	30MHz to 6000M	Hz				
Test site:	Measurement Dis	stance: 3m	Sem	i-Anechoic (Chamber)	
Receiver setup:	Frequency Detec		or	RBW	VBW	Remark
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value
	Frequency Limit (dBuV/m @3m)					Peak Value
			Line			Average Value
Limit:	30MHz-88N		LIM	40.0	@3m)	Remark Quasi-peak Value
	88MHz-216			43.5		Quasi-peak Value
	216MHz-960			46.0		Quasi-peak Value
	960MHz-1GHz 54.0 Quasi-peak					
				54.0		Average Value
	Above 1G	HZ		74.0		Peak Value
Test setup:	Below 1GHz Tum 0.8m Table 0.8m Above 1GHz	4m	7777	RFT		
	AE		3m		Antenna Tower	
Test Procedure:	ground at a 3 r degrees to dete 2. The EUT was s which was mou 3. The antenna h ground to dete	meter semi- ermine the page 3 meters unted on the eight is vari rmine the m	aneclositions aware top et of et o	hoic camber on of the hig by from the in of a variable om one mete um value of	The table The table	e-receiving antenna, ntenna tower. neters above the

	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

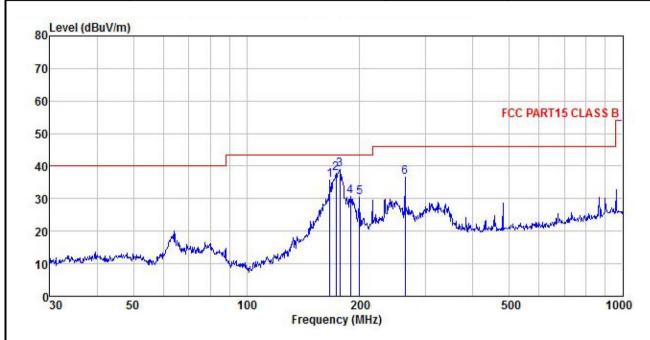


Measurement Data:

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	X693
Test By:	Janet	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Antenna					Limit		
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	<u>dB</u> /m			<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	62.651	46.68	10.25	0.43	0.00	29.76	27.60	40.00	-12.40	QP
2	75.446	46.29	11.64	0.46	0.00	29.68	28.71	40.00	-11.29	QP
2	173.205	48.69	16.69	0.66	0.00	29.02	37.02	43.50	-6.48	QP
4	175.652	49.28	16.81	0.67	0.00	29.01	37.75	43.50	-5.75	QP
5	177.509	49.99	16.85	0.67	0.00	28.99	38.52	43.50	-4.98	QP
6	263.819	43.47	18.56	0.81	0.00				-11.67	


Remark

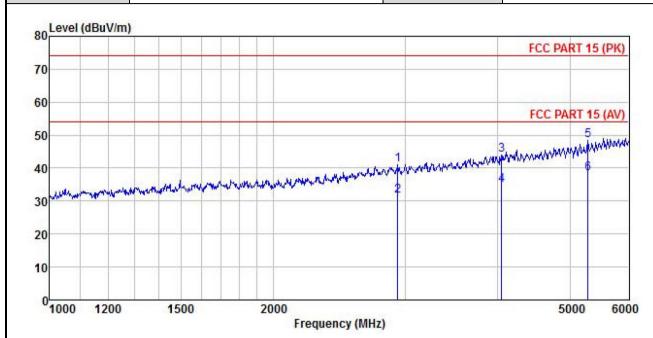
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

5 23116366 Page 13 of 18

Product Name:	Mobile Phone	Product Model:	X693
Test By:	Janet	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

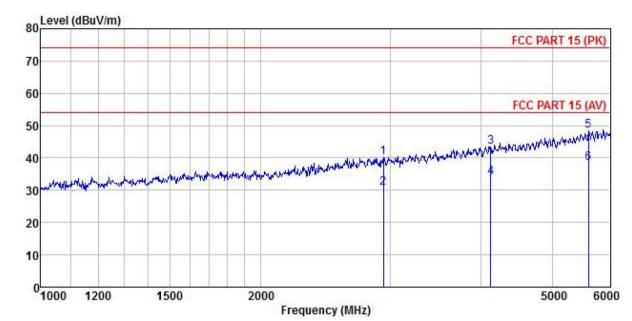
	-		Antenna			Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Kemark
_	MHz	dBu₹	dB/m	₫B	₫B	dB	dBuV/m	dBuV/m	d₿	
1	166.651	48.29	15.90	0.65	0.00	29.08	35.76	43.50	-7.74	QP
2	173.205	49.33	16.69	0.66	0.00	29.02	37.66	43.50	-5.84	QP
3	176.888	50.36	16.84	0.67	0.00	29.00	38.87	43.50	-4.63	QP
4	189.074	41.66	17.37	0.70	0.00	28.91	30.82	43.50	-12.68	QP
5	199.986	40.24	18.30	0.72	0.00	28.83	30.43	43.50	-13.07	QP
6	263.819	45.62	18.56	0.81	0.00	28.51	36.48	46.00	-9.52	QP

Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	Mobile Phone	Product Model:	X693
Test By:	Janet	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq			Antenna Cable Factor Loss				Limit Line		Remark
	MHz	dBu∇	— <u>d</u> B/m		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2935.411	47.63	28.28	4.82	1.87	41.55	41.05	74.00	-32.95	Peak
2	2935.411	38.15	28.28	4.82	1.87	41.55	31.57	54.00	-22.43	Average
3	4045.367	48.41	29.38	5.81	2.21	41.81	44.00	74.00	-30.00	Peak
4	4045.367	39.11	29.38	5.81	2.21	41.81	34.70			Average
5	5283.267	49.03	31.83	6.81	2.58	41.91	48.34	74.00	-25.66	Peak
6	5283.267	39.08	31.83	6.81	2.58	41.91	38.39	54.00	-15.61	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	X693
Test By:	Janet	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀			<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2940.675	46.38	28.28	5.29	1.87	41.55	40.27	70.00	-29.73	Peak
2	2940.675	36.88	28.28	5.29	1.87	41.55	30.77	50.00	-19.23	Average
3	4118.504	47.26	29.50	6.29	2.24	41.81	43.48	74.00	-30.52	Peak
4	4118.504	37.65	29.50	6.29	2.24	41.81	33.87	54.00	-20.13	Average
5	5605.076	47.83	32.34	7.30	2.69	41.79	48.37	74.00	-25.63	Peak
6	5605.076	37.89	32.34	7.30	2.69	41.79	38.43	54.00	-15.57	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366